1 / 76

Dúvidas denucci@dglnet.br Arquivo Analytical Methodologies Site gdenucci

Dúvidas denucci@dglnet.com.br Arquivo Analytical Methodologies .ppt Site www.gdenucci.com. Bioequivalence. Two formulations of the same drug product produce equivalente bioavailability profiles. BIOAVAILABILITY CAN BE DETERMINED BY MEASUREMENTS OF.

garret
Télécharger la présentation

Dúvidas denucci@dglnet.br Arquivo Analytical Methodologies Site gdenucci

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dúvidas denucci@dglnet.com.br Arquivo Analytical Methodologies.ppt Site www.gdenucci.com

  2. Bioequivalence Two formulations of the same drug product produce equivalente bioavailability profiles

  3. BIOAVAILABILITY CAN BE DETERMINED BY MEASUREMENTS OF • Concentration of the active drug or metabolite(s) in biological fluid as a function of time. • Urinary excretion of the active drug or metabolite(s) as a function of time. • Any appropriate acute pharmacological effect.

  4. Pharmacokinetic parameters 8 6 4 2 0 Cmax Concentration tmax 0 3 6 9 12 Hours

  5. Pharmacokinetic parameters 8 6 4 2 0 Concentration AUC 0-12h 0 3 6 9 12 Hours

  6. Metodologias para análise de drogas • Ensaios biológicos. • Testes colorimétricos. • Radioimunoensaio. • Espectrofotometria (uv visível, i.v, fluorescência). • Espectrometria de massa. • Ressonância magnética nuclear. • Cromatografia de camada delgada. • Cromatografia gasosa. • Cromatografia líquida de alta pressão • LC-MS-MS

  7. Metodologia para dosagem em líquidos biológicos • H.P.L.C. • H.P.L.C. acoplado a MS (LC-MS-MS).

  8. Topics - The Mass spectrometry • The choice of the Internal Standard • The ionization methods • Sample preparation • The ion suppression experiment • Practical Examples • Conclusion

  9. What is the Mass Spectrometry? • Measure the mass (mass-to-charge ratio) • Analytical technique for: • identify unknown compounds • elucidate structure and chemical properties • quantitation of chemical substances • Good for detection of very small concentration (typically 10-12 - 10-15 moles)

  10. How does the mass spectrometer work?

  11. Triple Quadrupole Mass Spectrometer Set up

  12. Mass Spectrometry - Ionization Methods • Electron Impact (EI) • Chemical Ionization (CI) • Atmospheric Pressure Ionization (API) • ElectroSpray Ionization (ESI) • Atmospheric Pressure Chemical Ionization (APcI) • Matrix Assisted Laser Desorption Ionization (MALDI) • Fast Atom Bombardment (FAB)

  13. Why use API-MS? • Cover a high range of molecular weight • Compatible with a broad range of compounds • Several types of inlets can be used (flow injection, HPLC, CE) • Rugged and easier to use

  14. Atmospheric Pressure Ionization Types • Electrospray (ESI): uses chemical fields to generate charged droplets. It can be positive (ES+) or negative (ES-). • Pneumatically Assisted Electrospray: same as above but use a pneumatic nebulization • APcI: where the solvent acts as the CI reagent gas to ionize the sample • APPI (Atmospheric Pressure PhotoIonization): Krypton Lamp producing UV light ionizes gas phase analytes or dopants with subsequent gas-phase reaction

  15. Internal Standard (I.S.) • Similar structure (Analogues) • the analyte and the I.S. should have the same functional groups • attention in the extraction phase • ionization conditions may be different • Deuterated isotopes • the deuterated analyte • not always commercially available

  16. Sample Extraction • Liquid/Liquid • two phases (aqueous/organic solvent) • faster • cheaper • Protein precipitation • Very simple • Fast • “dirty” samples • SPE (Solid Phase Extraction) • cartridges • Easier for automatization • More expensive

  17. Typical procedure for Liquid/Liquid Extraction • Dispense the sample into appropriate clean glass tubes; • Dispense the I.S. solution and vortex-mix the samples for approximately 10 s.; • Add the organic solvent mixture (e.g. Diethyl-Ether/Hexane 80:20) and vortex-mix the samples for 40 s.; • Remove the organic layer, transfer it into anaother glass tube and evaporate it into a Nitrogen stream; • Reconstitute the samples in a fixed volume of mobile phase, vortex-mix for 15 s. and transfer it into the HPLC vial

  18. Typical procedure for Solid Phase Extraction (SPE) • Add the sample into appropriate tubes; • Dispense the corresponding I.S. and vortex-mix samples; • Apply the samples to individual SPE cartridges (previously pre-conditioned with methanol and water). Using a light positive pressure the samples are slowly drawn through the cartridges; • Wash the cartridges (usually using water); • Apply positive pressure to ensure to dry the cartridges; • The extract is then eluted form the cartridges using an appropriate eluent and collected into glass test tubes; • Transfer the eluted solution into the HPLC vials;

  19. Liquid/Liquid Fluoxetine Fluconazole Captopril Omeprazole Paroxetine Diazepam Bromazepam Midazolam Nimodipine Amlodipine SPE Cephalexin Cefaclor Amoxicilin Didanosine Acyclovir Losartan Enalapril Lisinopril Some examples of use in bioequivalence studies • Protein precipitation • Methyl-DOPA

  20. Ion Suppression • MS signal suppression • Caused by any interference (e.g. salt, proteins, etc.) • Non-specific extraction • The effects of the sample preparation in the ionization process should be evaluated

  21. Ion suppression experimentExperimental set-up

  22. Ion suppression experiment • Infusion pump: an standard concentration of an analyte/I.S. mix (e.g. 50 ug/mL at 50 uL.min) • HPLC pump: normal mobile phase at the flow rate specified for the assay • Extract a blank sample and inject it into the system • See what happen with the MS signal

  23. 100 MRM of 2 Channels ES+ % 247 > 204.2 -15 100 237 > 194.2 % -15 Time 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 Ion suppresion experiment

  24. 2.32 100 MRM of 2 Channels ES+ % 247 > 204.2 -15 2.37 100 237 > 194.2 % -15 Time 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 Ion suppresion experiment

  25. Bioequivalence studies: Examples

  26. Determination of Amoxicilin using Cefadroxil as internal standard • Analytical column: Genesis C18, 4µm (150 mm x 4.6 mm i.d.) • Mobile phase: 50% Acetonitrile/50% Water & 10mM formic acid • Ionization mode: Positive electrospray (ES+) • Ions were monitored by MRM (Multiple Reaction Monitoring) • Sample Extraction: Solid/Liquid (Oasis SPE cartridges)

  27. Amoxicilin M.W. 365.40 g/mol Cefadroxil M.W. 363.38 g/mol Chemical Structures

  28. m/z 364 m/z 366 m/z 349 m/z 208 Fragmentation routes for Amoxicilin and Cefadroxil

  29. Daughters of 366 348.9 100 % 113.7 366.2 208.2 159.9 304.7 330.6 234.4 276.7 0 366.3 100 349.0 % 104.4 388.0 0 Da/e 100 150 200 250 300 350 400 Mass Spectra - Amoxicilin

  30. 208.0 100 Daughters of 364 % 157.9 347.1 0 364.0 100 % 0 M/z 100 200 300 400 500 600 Mass Spectra - Cefadroxil

  31. Amoxicillin and Cefadroxil chromatograms Amoxicilin 0.05 mg/mL 2.63 366.00 > 349.20 100 % 0 Cefadroxil 0.05 mg/mL 2.63 100 364.00 > 207.80 % Time (min) 0 1.00 2.00 3.00 4.00 5.00

  32. 3.49 Response 0 mg/mL 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 Amoxicillin Calibration Curve

  33. Total run time: 4.0 min. • LOQ: 50 ng/mL • Precision: 15.4 % • Accuracy: - 6.5 %

  34. The determination of RSD 921 using RSD 921-D3as I.S. • Analytical column: Genesis C18, 4µm (150mm x 4.6mm i.d.) • Mobile phase: 50% Acetonitrile + 10mM Formate • Ionization mode: Positive electrospray (ES+) • Ions were monitored by MRM (Multiple Reaction Monitoring) • Sample Extraction: Liquid/Liquid (Diethyl ether/Hexane 80:20)

  35. RSD 921 M.W. 356.54 g/mol RSD 921-D3 M.W. 359.52 g/mol Chemical Structures

  36. m/z 357 m/z 360 m/z 286 m/z 289 Fragmentation routes for RSD921 and RSD921-D3

  37. RSD 921 and RSD 921-D3 Chromatograms RSD 921 360.20 > 289.10 1.84 100 % 0 RSD 921- D3 357.20 > 286.00 1.85 100 % 0 Time 0.50 1.00 1.50 2.00 2.50

  38. 4.97 Response ng/mL 0 5.0 10.0 15.0 20.0 Calibration Curve - RSD

  39. 286.3 Daughters of 357 100 % 0 357.4 100 % m/z 0 60 100 140 180 220 260 300 340 380 420 Mass Spectra - RSD

  40. 289.3 100 360.4 % 82.3 0 114.9 100 Daughters of 360 289.2 % 147.0 80.6 209.1 0 Da/e 50 100 150 200 250 300 350 400 450 Mass Spectra - RSD-D3

  41. Total run time: 3.0 min. • LOQ: 0.1 ng/mL • Precision: 4.9 % • Accuracy: 2.16 %

  42. Determination of Enalaprilat using Enalaprilat-phenyl-D5 as internal standard • Analytical column: Genesis C18, 4µm (150 mm x 4.6 mm i.d.) • Mobile phase: 50% acetonitrile in 10 mM acetic acid + 20 mM ammonium acetate aqueous solution • Ionization mode: Positive electrospray (ES+) • Ions were monitored by MRM (Multiple Reaction Monitoring) • Sample Extraction: Solid/Liquid (Oasis SPE cartridges)

  43. Enalaprilat M.W. 348.39 g/mol Enalaprilat-phenyl-D5 M.W. 353.42 g/mol Chemical Structures

  44. m/z 354 m/z 349 m/z 211 m/z 206 Fragmentation routes for Enalaprilat and Enalaprilat-phenyl-D5

  45. Daughters of 349 206 100 % 160 102 303 116 349 0 Scan ES+ 349 100 % 350 371 64 91 81 206 185 429 303 415 214 0 Da/e 50 100 150 200 250 300 350 400 450 500 Enalaprilat Mass Spectra

  46. 12.9 Response ng/mL 0 50.0 100.0 150.0 200.0 Calibration Curve

  47. Total run time: 4.0 min. • LOQ: 0.5 ng/mL • Precision: 6.9 % • Accuracy: 2.75 %

  48. Determination of Diclofenac using ES + • Analytical column: Genesis C8, 4µm (150 mm x 4.6 mm i.d.) • Mobile phase: 50% acetonitrile / 50% water & 10 mM acetic acid • Ionization mode: Positive electrospray (ES+) • Ions were monitored by MRM (Multiple Reaction Monitoring) • Sample Extraction: Liquid/Liquid (diethyl ether/dicloromethane 70:30)

More Related