1 / 27

Some aspects of windpower supply into electrical grid Prof. Dr. Rainer Haller

Some aspects of windpower supply into electrical grid Prof. Dr. Rainer Haller ZCU Pilsen/ HS Regensburg. 110 kV. 220 kV. 380 kV. Reliability of electrical energy supply in Germany. Anzahl der Störungen. VU = break of supply. realization of state rules (EEG). 1 x 200 kW.

glen
Télécharger la présentation

Some aspects of windpower supply into electrical grid Prof. Dr. Rainer Haller

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Some aspects of windpower supply into electrical grid Prof. Dr. Rainer Haller ZCU Pilsen/ HS Regensburg

  2. 110 kV 220 kV 380 kV Reliability of electrical energy supply in Germany Anzahl der Störungen VU = break of supply

  3. realization of state rules (EEG) 1 x 200 kW 50 x 2.000 kW Wind energy supply into electrical grid

  4. 380-kV-UW 220-kV-UW Kraftwerk 1200 MW Bürgerwindpark Butendiek 240 MW Dan Tysk 1500 MW UW Flensburg Sandbank 2600 MW Nördlicher Grund 2100 MW OWP Nordsee ? MW Nordsee-Ost 400 MW UW Audorf Amrumbank West 1760 MW Borkum West 1040 MW Borkum Riffgrund West 2290 MW Borkum Riffgrund 625 MW Hochsee WP Nordsee 2900 MW Schl.-Holst. Nordsee 500 MW Meerwind 1020 MW UW Brunsbüttel North Sea Windpower 1430 MW Nordergründe 240 MW UWWilhemshaven UW Dollern UWEmden 3200 MW UW Conneforde UW Diele Offshore-Projects in the North Sea (final status) DK Nordsee 4340 MW 3680 MW 8285 MW Offshore-WP 16.000 MW NL Kraftwerke 6.500 MW

  5. 3.800 6.400 12.800 15.700 Summe 7.500 6.000 Offshore 8.200 800 6.800 5.600 3.800 Onshore Increasing of Windpower supply z.B. E.ON Netz (Angaben in MW) 2001 2006 2011 2016

  6. 3.800 6.400 12.800 15.700 Summe 1.000 km (550 Mio. €) 700 km (400 Mio. €) kumulierte zusätzlichwind-bedingte Trassen-kilometer110/380 kV 350 km (110 Mio. €) Onshore Increasing of grid facilities z.B. E.ON Netz (Angaben in MW) Offshore 2001 2006 2011 2016

  7. Netz Netz Netz Netz Netz Netz Last Last Power flow and Windpower supply without Wind additional windpower G 380/220 kV G 380/220 kV 110 kV 110 kV 20 kV 20 kV Verteilnetz Sammelnetz

  8. Consequences of WP supply for grid facilities and structure Erheblicher Ausbaubedarf des Höchst- und Hochspannungsnetzesfür den Anschluss von großen Windenergieanlagen Bisherige Dimensionierung entsprechend der maximalen Verbraucherleistung Zukünftige Dimensionierung entsprechend dem Abtransport der eingespeisten Windleistung

  9. Problems of „power steps“ Dispatcher ohne Windenergieim November 1994 mit Windenergieim Januar 2000

  10. Varianz1700 MW Mo Di Mi Do Fr Sa So Increasing demand of regulating energy dispatcher 400 MW in 15 min power steps during one day stochastical change during one week

  11. Increasing problems at grid operations dispatcher problems for grid operation demands to the Wind Generators increased overload of transmission capacity problems at voltage tolerances (missing reactive power) problems at short circuit failures for grid stability Regulation of active power (rated value and gradient)additional reactive power by WG in a large range of cos reducing of active power by WG over 51,5 Hz no switching of WG at grid short circuits

  12. ASG ASG SG Ge-triebe Asynchrongenerator (AG) Umrichter ~ ~ Ge-triebe ~ Doppelt gespeister ASG (DG) – – ~ Umrichter DC Synchrongenerator (SG) Technical realization of WG

  13. Short circuit simulation in real grid (E.ON) Voltage profil after a three phase short circuit • Wind power will be switched off at short circuit

  14. Wind (outage) power versus UCTE- primary regulating power installed power outage power ConverterDG/SG outage power Mix AG/DG/SG max permissible outage power accord. UCTE

  15. Problems of three phase short circuit in transmission grid • Voltage significant under 90 % • large area outage of wind power • primary regulating power no sufficient (UCTE max. 3000 MW) • decreasing of frequency under 50 Hz • switching off for large power consumers (DVG 5-Stufenplan • possible outage into UCTE grid at short circuit the switching off for WG under 0,8 U/UN *) cannot be allowed grid code for WG e.g. for E.ON Netz [ Quelle: www.eon-netz.com] *) VDEW Richtlinie "Eigenerzeugungsanlagen am Mittelspannungsnetz"

  16. problems for power plants and grids power plants • increasing regulation power and higher demands for regulation possibilities of power units (esp. basic load power plants) • Increasing taking into account of wind power for dispatching of planning power plants (nighty at large wind only KKW and WG on grid) • changing of power flow in the UHV- and HV- grid (problems of power trading) grids • increasing problems of transmission capacities of important power connection lines (bottleneck problems) • increasing problems in additional generating of reactive power • increasing problems for grid stability at short circuit failures

  17. political rules and energy laws modification of WG (no separation at short circuit) repowering and optimization of grids and pp increasing of regulating power (conv. pp) Conclusions and outlook large wind power plants grid operation increasing of planned wind power plants and their connection into the transmission grid requests significant technical and economical efforts

  18. Outlook Realization of the project „BorWin1“ (connection of windpower plant „BARD“) technical data: length ca. 200 km transmission line (2 x 200 MW, HVDC) 2 converter units (HVDC- HVAC, HVDC – HVAC) www.eon-netz.com

  19. problems of on- shore grid

  20. principle for on- shore grid: • grid optimization (repowering, monitoring, ..) • additional lines

  21. influence of climate conditions for current load capacity

  22. principle of overhead- line- monitoring

  23. introduction of monitoring system requests the repowering of all components of grid

  24. on- site testing of monitoring [E.ON- Netz]

  25. Increased transmission capacity by using of monitoring www.eon-netz.com one week

  26. advantages by using of monitoring system

More Related