1 / 29

Radiation tolerance of ultrafine-grained materials produced by severe plastic deformation

N.A. Enikeev V.K. Shamardin , B. Radiguet. Radiation tolerance of ultrafine-grained materials produced by severe plastic deformation. Ufa State Aviation Technical University Saint Petersburg State University Russian Institute of Atomic Reactors Rouen University. RIAR, May 28-31,

harbuck
Télécharger la présentation

Radiation tolerance of ultrafine-grained materials produced by severe plastic deformation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. N.A. Enikeev V.K. Shamardin, B. Radiguet Radiation tolerance of ultrafine-grained materials produced by severe plastic deformation Ufa State Aviation Technical University Saint Petersburg State University Russian Institute of Atomic Reactors Rouen University RIAR, May 28-31, 2019, Dimitrovgrad, Russia

  2. In collaboration with: R. Valiev, M. Abramova (USATU, RU) V. Shamardin, T. Bulanova, A. Korsakov, A. Obukhov (RIAR, RU) X. Sauvage, B. Radiguet, A. Etienne, P. Pareige (Univ. Rouen, FR) F. Garner, l. Shao, E. Aydogan et al (TAMU, US) M. Short (MIT, US) B. Kalin, M. Ganchenkova, O. Emelyanova, P. Dzhumaev (MEPhI, RU) A. Kilmametov, Y. Ivanisenko, H. Hahn (KIT, DE) O. Maximkin, M. Gusev, K. Tsai, A. Yarovchuk (INP, KZ) S. Dobatkin, O. Rybalchenko (IMet, RU) L. Murty (NCSU, US) 2

  3. Need for high performance and radiation-resistant materials

  4. Strategiestoimproveradiationtoleranceof metallic materials • Variation of chemical composition • Manipulation by microstructure parameters

  5. Whygrainboundaries? For grain sizes less than 10 µm, absorption of point defects by grain boundaries becomes comparable with the effects of the other sinks (voids, dislocations and so on) D. R. Olander: Radiation Effects in Metals: Void Swelling and Irradiation Creep, in Fundamental Aspects of Nuclear Reactor Fuel Elements (DOE, United States, 1976) Self-healing effects at elevated temperatures X. M. Bai, A. F. Voter, R. G. Hoagland, M. Nastasi and B. P. Uberuaga: Science 327 (2010) I. J. Beyerlein, A. Caro, M. J. Demkowicz, N. A. Mara, A. Misra and B. P. Uberuaga: Mater. Today 16 (2013)

  6. Radiation defects in materials Grain boundaries Polycrystalline Nanocrystalline

  7. The first works on producing ultrafine grained materials by SPD techniques Equal channel angular pressing High pressure torsion Ufa, 1991-1993 -> UFG materials

  8. After ECAP The first works on producing ultrafine grained materials by SPD techniques Initial state Fine grain size Large amount of defects Phase transformations Various nanostructural features High angle grain boundaries! R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev: Mater. Sci. Eng. A 137 (1991) 35. R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov: Mater. Sci. Eng. A 186 (1993) 141.

  9. Nanostructural parameters of UFG materials • Grain boundaries: • equilibrium/non-equilibrium, • high/small angle, • GB character • Nanotwins • Nanoprecipitates • Phase transformations • Strain-induced segregations

  10. Web of Science: 4554 citations by May 2019 #1 all-time most cited paper in Prog. Mater. Sci. Electrical, Biological, Cyclic Shape memory Magnetic Corrosion

  11. New modifications of ECA pressing ECAP with parallel channels ECAP-Conform

  12. Other SPD techniques Accumulative roll bonding Tube twisting Multidirectional forging HPT extrusion Twist extrusion Incremental ECAP High pressure sliding

  13. Ion irradiation of SPD materials

  14. TEM images of nano Pd irradiated with 4×1017 ions/cm2 (a) and conventional Pd irradiated with 3×1017 ions/cm2 (b). M. Rose, G. Gorzawski, G. Miehe, A.G. Balogh, H. Hahn, Nanostruct. Mater. 6 (1995)

  15. First studies of UFG 316 steel produced by HPT after ion irradiation up to 10 dpa As received annealed 350C ion irr.350C Grain size ~ 50 nm is stable Segregation character is changed No clustering due to irradiation in the bulk = higher radiation resistance B. Radiguet, A. Etienne, P. Pareige, X. Sauvage, R. Valiev,J. Mater. Sci. 43 (2008), 7338-734

  16. CG 316 steel, Volgin thesis 2012: Frank loops are visible Irradiation dose ~ 5 dpa

  17. Ion irradiation of NS 316 steel produced by HPT CG NS Cr concentration – better corrosion resistance after irradiation E. Hug, R. Prasath Babu, I. Monnet, A. Etienne, F. Moisy, V. Pralong, N. Enikeev,M. Abramova, X. Sauvage, B. Radiguet, Appl. Surf. Sci. 392 (2017) Reduced irradiation hardening

  18. Ion irradiation of HPT EK-181 steel to large dose (400 dpa) at 475C CG UFG E. Aydogan, T. Chen, J.G. Gigax, D. Chen, X. Wang, P.S. Dzhumaev, O.V. Emelyanova, M.G. Ganchenkova, B.A. Kalin, M. Leontiva-Smirnova, R.Z. Valiev, N.A. Enikeev, M.M. Abramova, Y. Wu, W.Y. Lo, Y. Yang, M. Short, S.A. Maloy, F.A. Garner, L. Shao, J. Nucl. Mater 487 (2017) 96-104

  19. C. Sun, S. Zheng, C. C. Wei, Y. Wu, L. Shao, Y. Yang, K. T. Hartwig, S. A. Maloy, S. J. Zinkle, T. R. Allen, H. Wang, X. Zhang, Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments, Sci. Reports 5 (2015) 7801. C. Du, S. Jin, Y. Fang, J. Li, S. Hu, T. Yang, Y. Zhang, J. Huang, G. Sha, Y. Wang, Z. Shang, X. Zhang, B. Sun, S. Xin, T. Shen, Ultrastrong nanocrystalline steel with exceptional thermal stability and radiation tolerance, Nature Comm. 9 (2018) 5389. Z. Chen, L.L. Niu, Z. Wang, L. Tian, L. Kecskes, K. Zhu, Q. Wei, A comparative study on the in situ helium irradiation behavior of tungsten: Coarse grain vs. nanocrystalline grain, Acta Mater. 147 (2018) 100-112. M. Wurmshuber, D. Frazer, A. Bachmaier, Y. Wang, P. Hosemann, D. Kiener, Impact of interfaces on the radiation response and underlying defect recovery mechanisms in nanostructured Cu-Fe-Ag, Mater. Design 160 (2018) 1148-1157 O. El-Atwani, E. Esquivel, E. Aydogan, E. Martinez, J.K. Baldwin, M. Li, B.P. Uberuaga, S.A. Maloy, Unprecedented irradiation resistance of nanocrystalline tungsten with equiaxed nanocrystalline grains to dislocation loop accumulation, Acta Mater. 165 (2019) 118-128 G. Meric de Bellefon, I.M. Robertson, T.R. Allen, J.-C. van Duysen, K. Sridharan, Radiation-resistant nanotwinned austenitic stainless steel, Scripta Mater. 159 (2019) 123-127 X. Zhang, K. Hattar, Y. Chen, L. Shao, J. Li, C. Sun, K. Yu, N. Li, M.L. Taheri, H. Wang, J. Wang, M. Nastasi, Radiation damage in nanostructured materials, Progr. Mater. Sci. 96 (2018) 217–321

  20. Neutron irradiation of SPD materials

  21. First studies on neutron irradiation of bulk UFG 08Cr-18Ni steel produced by ECAP Yield stress Uniform elongation ECAP steel after irradiation to 5.3 dpa in research BOR-60 fission reactor VK. Shamardin, YD. Goncharenko,TM. Bulanova, AA. Karsakov, IV.Alexandrov, MM.Abramova, MV. Karavaeva Rev. Adv. Mater. Sci. 31 (2012) 167-173

  22. Neutron irradiation of NS 321 steel produced by HPT CG NS Before irradiation irradiation-induced hardening is suppressed After irradiation to 2·1020n/cm2 (0.05 dpa) Maksimkin, Gusev, Tsai, Yarovchuk, Rybalchenko,Enikeev,Valiev, Dobatkin: Phys. Met. Metall, (2015)

  23. Neutron irradiation of UFG low carbon steel produced by ECAP Neutron irradiation induced Si-Mn clusters found in ECAP (a) and coarse-grained (b) low-carbon steel-10 - A. Alsabbagh, R.Z. Valiev, K.L. Murty, J. Nucl. Mater. (2013) 443, p. 302-310 - A. Alsabbagh, A. Sarkar, B. Miller, J. Burns, L. Squires,D. Porter, J.I. Cole, K.L Murty, Mater. Sci. Eng. A615 (2014) 128-138 – 1.37 dpa

  24. Mechanical properties and microstructure of UFG stainless steel 321 neutron-irradiated up to 12 and 15 dpa at 350C and 450C, respectively Frank loop density: 3.0x1022 m-3vs 7-9x1022 m-3 in Neustroev et al, Proc. of Fontevraud (2006) Steel in CG state before (1) and after (2) at T = 450°C to a maximal damaging dose of ~15 dpa and, correspondingly, for the UFG steel before (3) and after (4) irradiation; CG state (1,2) and UFG state (3,4) tested at 550°C after irradiation at T = 450°C to a damaging dose of ~15 dpa (1,3) and tested at 600°C after irradiation at T = 350°C to 12 dpa V.K. Shamardin, M.M. Abramova, T.M. Bulanova, A.A. Karsakov, A.E. Fedoseev, A.V. Obukhov, R.Z. Valiev, I.V. Alexandrov, G.I. Raab, N.A. Enikeev, Mater.Sci. Eng. A 712 (2018)

  25. Summary • SPD allows producing various UFG metallic materials with high mechanical performance • UFG SPD alloys demonstrate a great potential as radiation-resistant materials both for ion and neutron irradiation. At the same time their stability under long-term, high dose and temperature irradiation is a matter for further studies. • There is a need for additional investigations to reveal an innovation potential of UFG materials for future advanced energy applications

More Related