1 / 50

Importance and Development of the Periodic Table

Explore the significance of the periodic table, its shape, and the patterns it reveals. Learn about the historical development and contributions of scientists like Mendeleev and Moseley. Discover the elements, their atomic masses, and how they combine and react.

hildamiller
Télécharger la présentation

Importance and Development of the Periodic Table

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Guide Questions Why is the periodic table so important? Why is the periodic table shaped the way it's shaped? Why do elements combine? Why do elements react? What other patterns are there in the world and how do they help us?

  2. THE DEVELOPMENT OF THE PERIODIC TABLE

  3. Alchemy & Diderot's Alchemical Chart of Affinities (1778):

  4. Lavoisier's Table of Simple Substances (1789)

  5. A fuller list of Dalton's elements and symbols (1808):

  6. Atomic Mass Atomic Mass Atomic Mass Name Name Name Döbereiner’s Triads Johann Döbereiner ~1817 Calcium 40 Barium 137 Average 88.5 Strontium 87.6 Chlorine 35.5 Iodine 127 Average 81.3 Bromine 79.9 Sulfur 32 Tellurium 127.5 Average 79.8 Selenium 79.2 Döbereiner discovered groups of three related elements which he termed a triad. Smoot, Price, Smith, Chemistry A Modern Course 1987, page 161

  7. J.W. Döbereiner (1829)Law of Triads • Elements could be classified into groups of three, or triads. • Trends in physical properties such as density, melting point, and atomic mass were observed. • Middle element’s atomic mass is the average of the other two.

  8. The Telluric Helix or Screw (1862)

  9. Alexandre-Émile Béguyer de Chancourtois(1820-1886) • The French geologist , was the first person to make use of atomic weights to produce a classification of periodicity. • He drew the elements as a continuous spiral around a metal cylinder divided into 16 parts. • The atomic weight of oxygen was taken as 16 and was used as the standard against which all the other elements were compared. • Tellurium was situated at the centre, prompting vis tellurique, or telluric screw.

  10. Newlands Law of Octaves John Newlands ~1863 Newlands Law of Octaves 1 Li Na K 2 Be Mg 3 B Al 4 C Si 5 N P 6 O S 7 F Cl Smoot, Price, Smith, Chemistry A Modern Course 1987, page 161

  11. TAVES • LAW OF OCTAVES • Arranged the 62 known elements into groups of seven according to increasing atomic mass. • He proposed that an eighth element would then repeat the properties of the first element in the previous group.

  12. Dmitri Ivanovich Mendeleev • Russian • Invented periodic table • In 1860’s proposed new arrangements of elements by properties • Arranged elements by atomic mass • Left gaps in the Periodic table for future elements yet discovered • Predicted existence of several unknown elements • Element 101 Dmitri Mendeleev

  13. In the 1860’s, Mendeleev and the German chemist Lothar Meyer, each working alone, made an eight-column table of the elements. • However, Mendeleev had to leave some blank spots in order to group all the elements with similar properties in the same column. To explain these blank spots, Mendeleev

  14. . On the basis of his arrangement, Mendeleev predicted the properties and atomic masses of several elements that were unknown at the time. • Mendeleev left blanks in his table for undiscovered elements. • Mendeleev predicted properties and masses of unknown elements correctly.

  15. Dmitri Mendeléev

  16. Mendeleev’s Periodic Table

  17. ? ? ? Mendeleev left gaps for elements yet to be discovered. Mendeleev’s Early Periodic Table TABELLE II GRUPPE I GRUPPE II GRUPPE III GRUPPE IV GRUPPE V GRUPPE VI GRUPPE VII GRUPPE VIII ___ ___ ___ ___ RH4 RH3 RH2 RH R2O RO R2O3 RO2 R2O5 RO3 R2O7 RO4 REIHEN 1 2 3 4 5 6 7 8 9 10 11 12 H = 1 Li = 7 Be = 9.4 B = 11 C = 12 N = 14 O = 16 F = 19 Na = 23 Mg = 24 Al = 27.3 Si = 28 P = 31 S = 32 Cl = 35.5 K = 39 Ca = 40 __ = 44 Ti = 48 V = 51 Cr = 52 Mn = 55 Fe = 56, Co = 59, Ni = 59, Cu = 63 (Cu = 63) Zn = 65 __ = 68 __ = 72 As = 75 Se = 78 Br = 80 Rb = 85 Sr = 87 ? Yt = 88 Zr = 90 Nb = 94 Mo = 96 __ = 100 Ru = 104, Rh = 104, Pd = 106, Ag = 108 (Ag = 108) Cd = 112 In = 113 Sn = 118 Sb = 122 Te = 125 J = 127 Cs = 133 Ba = 137 ? Di = 138 ? Ce = 140 __ __ __ __ __ __ __ ( __ ) __ __ __ __ __ __ __ __ ? Er = 178 ? La = 180 Ta = 182 W = 184 __ Os = 195, Ir = 197, Pt = 198, Au = 199 (Au = 199) Hg = 200 Tl= 204 Pb = 207 Bi = 208 __ __ __ __ __ Th = 231 __ U = 240 __ __ __ __ __ From Annalen der Chemie und Pharmacie, VIII, Supplementary Volume for 1872, p. 151.

  18. Lothar Meyer (1830 – 1895) Invented periodic table independently of Mendeleev his work was not published until 1870 - one year after Mendeleev's

  19. Elements Properties are Predicted O’Connor Davis, MacNab, McClellan, CHEMISTRY Experiments and Principles 1982, page 119,

  20. Modern Periodic Law • Henry Moseley (1887-1915) • subjected known elements to x-rays and was able to derive a relationship between x-ray frequency and number of protons. • arranged the elements according to increasing atomic numbers and not atomic masses, some of the inconsistencies associated with Mendeleev's table were eliminated. • The modern periodic table is based on Moseley's Periodic Law (atomic numbers).

  21. Extended periodic table

  22. Other Periodic tables

  23. Dutch Periodic Table 118 117 116 115 114 113 112 111 110 109 108 107 106 Strong, Journal of Chemical Education, Sept. 1989, page 743

  24. Stowe’s Periodic Table

  25. Benfey’s Periodic Table

  26. ELECTRON CONFIGURATION AND THE PERIODIC TABLE

  27. GROUP - vertical columns in the periodic table PERIOD - horizontal rows in the periodic table BLOCK - 4 areas in the periodic table representing the orbital type

  28. Periodic Table s s H 1 He 2 H 1 p 1 1 Li 3 Be 4 B 5 C 6 N 7 O 8 F 9 Ne 10 2 2 Na 11 Mg 12 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 d 3 3 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr 24 Mn 25 Fe 26 Co 27 Ni 28 Cu 29 Zn 30 Ga 31 Ge 32 As 33 Se 34 Br 35 Kr 36 4 4 Rb 37 Sr 38 Y 39 Zr 40 Nb 41 Mo 42 Tc 43 Ru 44 Rh 45 Pd 46 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 5 5 Cs 55 Ba 56 Hf 72 Ta 73 W 74 Re 75 Os 76 Ir 77 Pt 78 Au 79 Hg 80 Tl 81 Pb 82 Bi 83 Po 84 At 85 Rn 86 * * 6 6 Fr 87 Ra 88 Rf 104 Db 105 Sg 106 Bh 107 Hs 108 Mt 109 W W 7 7 f La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 Gd 64 Tb 65 Dy 66 Ho 67 Er 68 Tm 69 Yb 70 Lu 71 * Ac 89 Th 90 Pa 91 U 92 Np 93 Pu 94 Am 95 Cm 96 Bk 97 Cf 98 Es 99 Fm 100 Md 101 No 102 Lr 103 W

  29. Orbitals Being Filled 1 8 Groups 2 1s 1 3 4 5 6 7 1s 2s 2 2p 3s 3p 3 4p 3d Periods 4s 4 4d 5p 5s 5 La 5d 6p 6 6s Ac 6d 7 7s 4f Lanthanide series 5f Actinide series Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 345

  30. VALENCE ELECTRON 4s2 PERIOD =4 BLOCK =sGROUP NUMBER = IIA ( FAMILY A - s , p ) (FAMILY B - d , f )

  31. VALENCE ELECTRON 4s2 4p4 PERIOD= 4BLOCK= p GROUP NUMBER = VI A ( FAMILY A - s , p ) (FAMILY B - d , f )

  32. Uun 110 Uuu 111 Uub 112 Uuq 113 Uuh 116 Uuo 118 The Periodic Table Noble gases II A Alkaline earth metals Halogens 1 18 H 1 He 2 2 13 14 15 16 17 Li 3 Be 4 B 5 C 6 N 7 O 8 F 9 Ne 10 3 4 5 6 7 8 9 10 11 12 Na 11 Mg 12 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 Transition metals K 19 Ca 20 Sc 21 Ti 22 V 23 Cr 24 Mn 25 Fe 26 Co 27 Ni 28 Cu 29 Zn 30 Ga 31 Ge 32 As 33 Se 34 Br 35 Kr 36 4 Alkali metals Rb 37 Sr 38 Y 39 Zr 40 Nb 41 Mo 42 Tc 43 Ru 44 Rh 45 Pd 46 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 * Hf 72 Ta 73 W 74 Re 75 Os 76 Ir 77 Pt 78 Au 79 Hg 80 Tl 81 Pb 82 Bi 83 Po 84 At 85 Rn 86 Fr 87 Ra 88 Y Rf 104 Db 105 Sg 106 Bh 107 Hs 108 Mt 109 * Lanthanides La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 Gd 64 Tb 65 Dy 66 Ho 67 Er 68 Tm 69 Yb 70 Lu 71 Ac 89 Th 90 Pa 91 U 92 Np 93 Pu 94 Am 95 Cm 96 Bk 97 Cf 98 Es 99 Fm 100 Md 101 No 102 Lr 103 Y Actinides

  33. Electron Filling in Periodic Table metallic character increases nonmetallic character increases metallic character increases nonmetallic character increases

  34. H 1 He 2 H 1 1 Li 3 Be 4 B 5 C 6 N 7 O 8 F 9 Ne 10 2 Na 11 Mg 12 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 3 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr 24 Mn 25 Fe 26 Co 27 Ni 28 Cu 29 Zn 30 Ga 31 Ge 32 As 33 Se 34 Br 35 Kr 36 4 Rb 37 Sr 38 Y 39 Zr 40 Nb 41 Mo 42 Tc 43 Ru 44 Rh 45 Pd 46 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 5 Cs 55 Ba 56 Hf 72 Ta 73 W 74 Re 75 Os 76 Ir 77 Pt 78 Au 79 Hg 80 Tl 81 Pb 82 Bi 83 Po 84 At 85 Rn 86 * 6 Fr 87 Ra 88 Rf 104 Db 105 Sg 106 Bh 107 Hs 108 Mt 109 W 7 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 Gd 64 Tb 65 Dy 66 Ho 67 Er 68 Tm 69 Yb 70 Lu 71 Ac 89 Th 90 Pa 91 U 92 Np 93 Pu 94 Am 95 Cm 96 Bk 97 Cf 98 Es 99 Fm 100 Md 101 No 102 Lr 103

  35. Electron Filling in Periodic Table s s s s H 1s1 He 1s2 H 1s1 p p 1 1 Li 2s1 Be 2s2 B 2p1 C 2p2 N 2p3 O 2p4 F 2p5 Ne 2p6 2 2 Na 3s1 Mg 3s2 Al 3p1 Si 3p2 P 3p3 S 3p4 Cl 3p5 Ar 3p6 d d 3 3 K 4s1 Ca 4s2 Sc 3d1 Ti 3d2 V 3d3 Cr 3d5 Mn 3d5 Fe 3d6 Co 3d7 Ni 3d8 Cu 3d10 Zn 3d10 Ga 4p1 Ge 4p2 As 4p3 Se 4p4 Br 4p5 Kr 4p6 4 4 Rb 5s1 Sr 5s2 Y 4d1 Zr 4d2 Nb 4d4 Mo 4d5 Tc 4d6 Ru 4d7 Rh 4d8 Pd 4d10 Ag 4d10 Cd 4p1 In 5p1 Sn 5p2 Sb 5p3 Te 5p4 I 5p5 Xe 5p6 5 5 Cs 6s1 Ba 6s2 Hf 5d2 Ta 5d3 W 5d4 Re 5d5 Os 5d6 Ir 5d7 Pt 5d9 Au 5d10 Hg 5d10 Tl 6p1 Pb 6p2 Bi 6p3 Po 6p4 At 6p5 Rn 6p6 * * 6 6 Fr 7s1 Ra 7s2 Rf 6d2 Db 6d3 Sg 6d4 Bh 6d5 Hs 6d6 Mt 6d7 W W 7 7 f f La 5d1 Ce 4f2 Pr 4f3 Nd 4f4 Pm 4f5 Sm 4f6 Eu 4f7 Gd 4f7 Tb 4f9 Dy 4f10 Ho 4f11 Er 4f12 Tm 4f13 Yb 4f14 Lu 4f114 * * Ac 6d1 Th 6d2 Pa 5f2 U 5f3 Np 5f4 Pu 5f6 Am 5f7 Cm 5f7 Bk 5f8 Cf 5f10 Es 5f11 Fm 5f14 Md 5f13 No 5f14 Lr 5f14 W W

  36. SEATWORK NUMBER 2 (size 2)

  37. VALENCE ELECTRON 4s2 3d4 PERIOD= 4BLOCK= d GROUP NUMBER = VI B ( FAMILY A - s , p ) (FAMILY B - d , f )

  38. FAMILY B = all elements belonging to the d and f orbital 3 = IIIB 4 = IVB 5 = VB 6 = VIB 7 = VII B 8, 9, 10 = VIIIB 11 = IB 12 = 2B

More Related