1 / 29

WinBugs with some PK examples

WinBugs with some PK examples. Peter Blood CP-Bios Novartis Horsham Research Centre. Examples. IV dose Cadralazine Oral 1 compartment Theophylline. A Simple Hierarchical Structure. IV - Cadralazine. Taken IV by patients for cardiac failure Data consisted of 10 patients on 30mg

hisano
Télécharger la présentation

WinBugs with some PK examples

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. WinBugs with some PK examples Peter Blood CP-Bios Novartis Horsham Research Centre

  2. Examples • IV dose • Cadralazine • Oral 1 compartment • Theophylline

  3. A Simple Hierarchical Structure

  4. IV - Cadralazine • Taken IV by patients for cardiac failure • Data consisted of 10 patients on 30mg • Original Bayesian analysis by Wakefield, Racine-Poon et al • (Applied Statistics 43,No 1, pp201-221,1994) • Analysed in BUGS with a linearised model • See version 0.6 manual addendum • Can now be analysed with nonlinear Model in PkBUGS • Will consider a non-linear model with winBUGS

  5. Cadralazine Data (from Wakefield et al)

  6. IV Cadralazine Equation

  7. Cadralazine Models • Analysed in BUGS v0.6 as product formulation of the bivariate nomal • Log V ~ N(ua, a) I (La,Ua) • Log Cl | log V ~ N(k0+k1(Log V - c), b) I(Lb,Ub) • Could now analyse in winBUGS 1.3 as multivariate • muab [1:2] ~ dmnorm(mean[1:2], prec[1:2,1:2]) • tauab[1:2,1:2] ~ dwish(R[1:2], 1:2],2) • Could now use PKBUGS (see David Lunn’s example)

  8. Cadralazine Doodle

  9. Cadralazine Results

  10. Theophylline Example • Bronchodilator (methyl xanthine) • Kinetics of drug’s anti-asthmatic properties • 12 Subjects measured 11 times over 25 hours • Oral first order one compartment model • First Analysed by Sheiner and Beal with NONMEM • Also by Pinherio and Bates in S+ using NLME • And in SAS using proc NLMIXED

  11. References on Theophylline • Davidian & Giltinan 1995 • “Non linear Models for Repeated • Measurement Data”, pub Chapman & Hall. • Pinheiro & Bates (1995) • Analysed in SAS (Proc Nlmixed) • Reanalysed in SPLUS (NLME) • Boeckman, Sheiner & Beal 1992 • (Nonmem User’s Guide Part V) • Created with Body weight as a Cl covariate • Absorption assumed same for all subjects • 1 Compartment model • Volume in L/kg, Clearance in L/hr/kg

  12. Theophylline Example 12 adults from NONMEM file

  13. Theophylline Example

  14. Open Oral Model for Theophylline

  15. Theophylline Central Code • for(i in 1:nSUBJ){ • for(j in 1:nTIME){ • mu[i,j] <- Dose[i]*exp(logka)* • (exp((-Time[i,j])*exp(lgcl[i]-lgvol[i])) • - exp((-Time[i,j])*exp(logka))) • /(exp(lgvol[i]+logka)-exp(lgcl[i])) • Conc[i,j] ~ dnorm(mu[i,j], epsilon) • }# end of j time loop • }# end of i subject loop • Conc[i,j] ~ dt(mu[i,j],epsilon,4)

  16. Prior Information • phi ~ dnorm(-3.5, 500) # log(Cl) • theta ~ dnorm(-1,100000) # log(V) • logka ~ dnorm( 0.5, 150) • eta1 ~ dgamma(40, 1) # inter • eta2 ~ dgamma(12, 3) # inter • epsilon ~ dgamma(0.001,0.001) # intra • for(i in 1:nSUBJ){ • lgcl[i] ~ dnorm(phi,eta1) • lgvol[i] ~ dnorm(theta,eta2)

  17. Initial Conditions (1st) • # 1st set of initial start conditions • list(phi = -4.0, • theta = -1.5, • logka = 0.3, • eta1 = 24, • eta2 = 2, • epsilon= 0.7, • lgcl = c(-4.0,-4.0,-4.0,-4.0,-4.0,-4.0, • -4.0,-4.0,-4.0,-4.0,-4.0,-4.0), • lgvol = c(-1.5,-1.5,-1.5,-1.5,-1.5,-1.5, • -1.5,-1.5,-1.5,-1.5,-1.5,-1.5) • )

  18. Data Collection & Posterior Statistics • for(i in 1:nSUBJ){ • Dose[i] <- Z[i,1,4] • for(j in 1:nTIME){ • Time[i,j] <- Z[i,j,5] • Conc[i,j] <- Z[i,j,6] • lgcl.mn <- mean(lgcl[]) • lgvol.mn <- mean(lgvol[]) • mnCl <- exp(lgcl.mn) • mnVol <- exp(lgvol.mn) • Sigma <- 1.0/sqrt(epsilon) • for(i in 1:nSUBJ){ • Cl[i] <- exp(lgcl[i]) • Vol[i] <- exp(lgvol[i])

  19. Theophylline Data-1st Subject • list(nSUBJ = 12, nTIME = 11, • Z = structure( • .Data=c( • 1, 1, 79.60, 4.02, 0.00, 0.74, • 2, 1, 79.60, 4.02, 0.25, 2.84, • 3, 1, 79.60, 4.02, 0.57, 6.57, • 4, 1, 79.60, 4.02, 1.12,10.50, • 5, 1, 79.60, 4.02, 2.02, 9.66, • 6, 1, 79.60, 4.02, 3.82, 8.58, • 7, 1, 79.60, 4.02, 5.10, 8.36, • 8, 1, 79.60, 4.02, 7.03, 7.47, • 9, 1, 79.60, 4.02, 9.05, 6.89, • 10, 1, 79.60, 4.02,12.12, 5.94, • 11, 1, 79.60, 4.02,24.37, 3.28, • ............ • 132,12, 60.50, 5.30,24.15, 1.17), .Dim=c(12,11,6)))

  20. Start of 2 chains for log(Cl) (Theophylline)

  21. 3rd Continuation of chains for log(Cl)(Theophylline)

  22. History Chains (Theophylline)

  23. Results for Theophylline • node mean sd MC err start sample • epsilon 0.891 0.124 0.0016 4001 20000 • eta1 36.34 6.035 0.0672 4001 20000 • eta2 4.734 1.124 0.0085 4001 20000 • Lgcl.mn -3.352 0.045 0.0011 4001 20000 • Lgvol.mn -0.719 0.028 0.0007 4001 20000 • Logka 0.483 0.056 0.0013 4001 20000 • Phi -3.432 0.039 0.0006 4001 20000 • Theta -0.999 0.003 0.00002 4001 20000 • sigma 1.067 0.075 0.0009 4001 20000

  24. Geweke & Cross-Correlation(chain 1)

  25. Multivariate Theophylline • # vague prior information • muab[1:2] ~ dmnorm(mean[1:2],precn[1:2,1:2]) • tauab[1:2,1:2] ~ dwish(omega[1:2,1:2],2) • # extra initial conditions • list( • mean = c(0,0), • precn = structure(.Data=c(1.0E-6,0,0,1.0E-.Dim=c(2,2)), • omega = structure(.Data=c(0.1,0,0,0.01), .Dim=c(2,2)))

  26. Results from Multi-variate Model(Theophylline) • node mean sd MC err start sample • epsilon 0.937 0.130 0.0018 4001 20000 • Logka 0.463 0.058 0.0014 4001 20000 • muab[1] -3.259 0.102 0.0015 4001 20000 • muab[2] -0.738 0.072 0.0009 4001 20000 • Sigma 1.041 0.073 0.0010 4001 20000 • tauab[1,1] 17.740 11.30 0.2633 4001 20000 • tauab[1,2] -5.524 11.50 0.2628 4001 20000 • tauab[2,1] -5.524 11.50 0.2628 4001 20000 • tauab[2,2] 32.080 21.60 0.4639 4001 20000

  27. Theophylline

  28. Conclusions • Run some examples of PK models in winBUGS. • IV and Oral One compartment examples. • Cadralazine and Theophylline • Compared with results from other sources • Looked at convergence issues in CODA • Perhaps you should now try PKBUGS (28models)! • Plea for further development of PKBUGS

  29. The End • Any • Questions • ?

More Related