670 likes | 815 Vues
Pulse Position Access Codes. A.J. Han Vinck. content. 1. Motivation UWB, frequency hopping (M-FSK) 2. Synchronized 3. PPM word format 4. Unsynchronized permutation codes, M-ary FSK 5. Codes with low corelation. UWB signal emission spectrum mask ( 3.1-10.6 GHz )
E N D
Pulse Position Access Codes A.J. Han Vinck
content • 1. Motivation • UWB, frequency hopping (M-FSK) • 2. Synchronized • 3. PPM word format • 4. Unsynchronized • permutation codes, M-ary FSK • 5. Codes with low corelation A.J. Han Vinck
UWB signal emission spectrum mask ( 3.1-10.6 GHz ) Signal bandwidth > 500 MHz A.J. Han Vinck
Pulsed transmission UWB Example: On-Off keying binary 1 0 1 0 A.J. Han Vinck
Pulsed transmission UWB 0 1 PPM < nS Nominal pulse position A.J. Han Vinck
Time-Frequency /Code division Time-frequency inefficient, but easy 0 Code division efficient, but complex 1 signature A.J. Han Vinck
Binary access model tr 1 rec 1 tr 2 rec 2 OR rec T tr T We want: „Uncoordinated and Random Access“ A.J. Han Vinck
(sync) Binary access model (cont‘d) In Out OR A.J. Han Vinck
Maximum throughput Channel per user interference Maximum SUM throughput = 0.69 bits/channel use Compare ALOHA: 0.36 A.J. Han Vinck
Superimposed codes T code words should not produce a valid code word T words Valid word N ? n ? n Transmit signature := 1 Transmit no signature := 0 A.J. Han Vinck
bounds Lower bound: # combinations for large N: superimposed signatures exist s.t. T log2 N < n < 3 T2 log2 N Obvious for T out of N items A.J. Han Vinck
Example: T 2, n = 9, N = 12 User signature 1 001 001 010 2 001 010 100 3 001 100 001 4 010 001 100 5 010 010 001 6 010 100 010 7 100 001 001 8 100 010 010 9 100 100 100 10 000 000 111 11 000 111 000 12 111 000 000 R = 2/9 TDMA gives R = 2/12 Example: 011 101 101 = x OR y ? A.J. Han Vinck
For PPM: make access model M-ary tr 1 rec 1 tr 2 rec 2 OR rec T tr T A.J. Han Vinck
M-ary Frequency hopping 0 1 f M frequencies t Symbol time Hopping period Different hopping patterns (signatures) A.J. Han Vinck
Maximum throughput Normalized SUM throughput (M-1)/M 0.69 bits/channel use Hence: PPM does not reduce efficiency! -”On the Capacity of the Asynchronous T-User M-frequency noislesss Multiple Access Channel” IEEE Trans. on Information Theory, pp. 2235-2238, November 1996. (A.J. Han Vinck and Jeroen Keuning) A.J. Han Vinck
Low density signaling - Note on ``On the Asymptotic Capacity of a Multiple-Access Channel'' by L. Wilhelmsson and K. Sh. Zigangirov, Probl. Peredachi Inf., 2000, vol. 36, no. 1, pp. 21--25, Gober, P. and Han Vinck, A.J.,[Probl. Inf. Trans. (Engl. Transl.), 2000, vol. 36, no. 1, pp. 19--22. A.J. Han Vinck
Example 2 users may transmit 1 bit of info at the same time User 1 112 or 222 User 2 121 or 222 User 3 211 or 222 User 4 122 or 222 Sum rate = 2/6 RTDMA = 2/8 Example: receive { (1), (1,2), 2 } =? A.J. Han Vinck
M-ary Superimposed codes T code words should not produce a valid code word M-1 words Valid word N n = 3 n Tlog2 N nM 3T2 log2 N Transmit signature := 1 Transmit no signature := 0 A.J. Han Vinck
Example: general construction 3 1 1 2 1 1 1 3 1 1 2 1 1 1 3 1 1 2 N N M(M-1) M -“On Superimposed Codes,” in Numbers, Information and Complexity, Ingo Althöfer, NingCai, Gunter Dueck, Levon Khachatrian,Mark S. Pinsker, Andras Sarkozy, Ingo Wegener and Zhen Zhang (eds.), Kluwer Academic Publishers, February 2000, pp. 325-331. A.J. Han Vinck and Samwel Martirosyan. A.J. Han Vinck
M-ary Error Correcting Codes minimum distance dmin = maximum number of agreements No „overlap“ if T ( n - dmin ) < n For M-ary RS codes (n,k,d = n-k+1 ) Rsuperimposed = T/nM RTDMA = T/Mk A.J. Han Vinck
examples T = 3, M = 9; RS-code ( n, k, d ) = (7,3,5) N = 93 T ( n - dmin) = 3 (7 – 5) < 7 ! T = 3, M = 9; RS-code ( n, k, d ) = (4,2,3) N = 92 T ( n - dmin) = 3 (4 - 3) < 4 ! A.J. Han Vinck
Condition: sufficient but not necessary Example: T = 2; n = 4; dmin = 2 0 0 0 0 0 1 1 0 0 2 2 1 1 1 2 2 1 2 0 1 1 0 1 0 2 2 1 1 2 0 2 1 2 1 0 1 2 2 2 0 0 0 1 2 2 2 0 2 T(n-d) = 2(4 – 2) = 4 = n ! A.J. Han Vinck
Superimposed codes summary • - Construction hard • Must be in sync • More than T users give errors • can be used as protocol sequences in collision channels • better than TDMA for • N = 1024, T < 6 A.J. Han Vinck
Permutation codes for access Properties: minimum distance dmin Signatures: length M M different symbols Examples: 0 1 2 0 1 2 1 0 2 1 2 0 dmin = 3 1 2 0 2 1 0 dmin = 2 2 0 1 2 0 1 0 2 1 A.J. Han Vinck
properties Example: M = 3; dmin = 2; |C| = 6 In general cardinality: Reseach challenge: when equality? A.J. Han Vinck
Interference property For minimum distance dmin = M-1 difference |C| = M(M-1) Maximum interference = M - dmin = 1 agreement CONCLUSION: up to M-1 users uniquely detectable always one unique position left A.J. Han Vinck
Non-coherent detector structure Envelope detection 1 Threshold 1 > = 1 < = 0 Envelope detection 2 Threshold 2 in > = 1 < = 0 Envelope detection M Threshold M > = 1 < = 0 A.J. Han Vinck
Coded Modulation for Power Line Communications”, AEÜ Journal, 2000, pp. 45-49, Jan 2000. A.J. Han Vinck
M code words per user M code words dmin = M n M M-1 users; T active; dmin = M-1 A.J. Han Vinck
Example: M = 3 1 2 0 1 0 2 2 1 0 2 0 1 0 1 2 0 2 1 6 users; <3 active; dmin = 2 n - dmin = 1 Rsuperimposed = 2/9 RTDMA = 2log23/18 User 1: 1 2 0 or 0 0 0 { ( (1,0), 2, (1,0) } = ? A.J. Han Vinck
Example M = 5 0 1 2 0 2 4 0 3 1 0 4 3 1 2 3 1 3 0 1 4 2 1 0 4 2 3 4 2 4 1 2 0 3 2 1 0 3 4 0 3 0 2 3 1 4 3 2 1 4 0 1 4 1 3 4 2 0 4 3 2 4 users; 2 active; dmin = 2; n - dmin = 1 Rsuperimposed = 2log25/15 RTDMA = 2log25/20 Codewords for user 4 A.J. Han Vinck
example A.J. Han Vinck
Alternatives: M-ary Prime code pulse at position i Symbol i 1 i M Example: 123 231 312 213 321 132 111 222 333 permutation code + extension A.J. Han Vinck
Prime Code properties Permutation code has minimum distance M-1 i.e. Interference = 1 Cardinality permutation code M (M-1) + extension M Cardinality PRIME code M2 BAD AUTO- and CROSS-CORRELATION A.J. Han Vinck
Non-symbol-synchronized User A (Auto)-Correlation = 2 User B (Cross)-Correlation = 2 A.J. Han Vinck
„Optical“ Orthogonal Codes: definition • Property: x, y {0, 1} AUTO CORRELATION CROSS CORRELATION x x y y cross shifted x x A.J. Han Vinck
Important properties (for code construction) 1) All intervals between two ones must be different 1000001 = 1, 6 1000010 = 2, 5 1000100 = 3, 4 C(7,2,1) 2) Cyclic shifts give cross correlation > 1 they are not in the OOC A.J. Han Vinck
autocorrelation w = 3 0 0 0 1 0 1 1 signature x 0 0 0 1 0 1 1 0 0 0 1 0 1 1 1 1 1 3 1 1 1 side peak > 1 impossible correlation 2 A.J. Han Vinck
Cross correlation 0 0 0 1 0 1 1signature x * * * 1 * * * signature y * * * 1 * * * * * * 1 * * ? Suppose that ? = 1 then cross correlation with x = 2 y contains same interval as x impossible A.J. Han Vinck
conclusion Signature in sync: peak of size w w must be large All other situations contributions 1 What about code parameters? A.J. Han Vinck
Code size for code words of length n • # different intervals < n • must be different otherwise correlation 2 • For weight w vector: w(w-1) intervals • 1 1 0 1 0 0 0 1 1 0 1 0 00 • |C(n,w,1)| (n-1)/w(w-1) ( = 6/6 = 1) 1, 2, 3, 4, 5, 6 A.J. Han Vinck
Example C(7,2,1) 1000001 = 1, 6 1000010 = 2, 5 1000100 = 3, 4 A.J. Han Vinck
Construction (n,w,1)-OOC IDEA: starting word 110100000 w=3, length n0 =9 1 2 Blow up intervals 1 1 0 1 0 0 0 0 0 0 *** 4 5 Parameter 1 0 0 0 1 0 0 0 0 1 0 *** m = 3 7 8 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 *** Proof OOC property: all intervals are different correlation =1 A.J. Han Vinck
Problem in construction • find good starting word • Find small value for blow up parameter -“A Construction for optical Orthogonal Codes with Correlation 1,” IEICE Trans. Fundamentals, Vol E85-A, No. 1, January 2002, pp. 269-272, Samwel Martirosyan and A.J. Han Vinck, A.J. Han Vinck