1 / 46

Communication across the life span

Communication across the life span. February 15, 2013. Communication. Communication is a characteristic of humans in all cultures and in all stages of development Typically we use language to communicate Communication can occur without some type of verbal exchange

irisa
Télécharger la présentation

Communication across the life span

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Communication across the life span February 15, 2013

  2. Communication • Communication is a characteristic of humans in all cultures and in all stages of development • Typically we use language to communicate • Communication can occur without some type of verbal exchange • However, communication can occur using interactions via gestures, facial expressions and body language • Language development has a biological basis and is specifically preprogrammed in human beings • It is also inter related to other domains such as cognition, psychosocial and motor development

  3. Speech • Speech is the verbal mode used for communication • Composed of individual sounds called phonemes • Allophones are variations of the same phoneme • Phonological rules are used to combine phonemes in the correct order in order to produce words • Word /cat/ is a combination of three sounds /k/, /q/, /t/ • Three sounds are combined using phonological rules (consonant is usually followed by a vowel sound, vowel is the nucleus of a syllable, etc.) • Helps us to generate thousands of words with different meanings

  4. Voice and articulation • Vocal folds vibrate to create a complex tone that is composed of many frequencies • Movements of the lips, tongue and teeth together with breath support produce various sounds • Try out two sounds – one voiced and the other voiceless • Articulation is the manner in which the oral and nasal cavities come together to modify the air stream that comes from the larynx • Speech can be analyzed in three ways: • Perceptual: Use of our auditory skills to receive and analyze messages • Physiology helps to us to understand production features of various allophones • Acoustical study utilized to quantify parameters of sound frequency, intensity and time

  5. The respiratory mechanism • Pulmonary system and the chest wall system • Pulmonary system • Lungs and airways • Upper respiratory system (oral and nasal cavities) • Lower respiratory system (larynx, bronchial system and the lungs) • Chest wall system • Rib cage, abdomen and diaphragm • http://www.youtube.com/watch?v=HiT621PrrO0&feature=player_embedded#!

  6. Larynx • Cartilaginous tube • Connects to the respiratory system (trachea and lungs) inferiorly • Superiorly to the vocal tract and oral cavity • Position important because of its relationship and integration between three subsystems • Pulmonary power house • Laryngeal valve • Supraglottic vocal tract resonator • Lungs are the power supply for aerodynamic (subglottic tracheal) pressure that blows vocal cords apart – sets them into vibration • Vocal cords oscillate in a series of compressions and rarefactions • Modulate the subglottic pressure or transglottal pressure of short pulses of sound energy to produce human voice • http://www.youtube.com/watch?v=Z_ZGqn1tZn8

  7. Laryngeal system • Vocal cords can be moved in several ways • Spread apart (abducted) • Gap between the vocal cords called the glottis • Air moves in and out freely when gap is wide open • Sounds harsh and noisy when somewhat constricted • Pulled together (adducted) • Airway is blocked • Air pressure builds up under the vocal cords causing them to bulge up • Eventually blown apart to release a puff of air • Vocal folds fall back due to elastic recoil or aerodynamic effect • Air pressure decreases when speed of airflow increases (Bernoulli effect) • Tensed or stretched

  8. Laryngeal system • Vibrating vocal cords produce puffs of air • Rate of vocal cord vibration (fundamental frequency) • 125 per second in males • 250 per second in adult females • 500 per second in young children (infants) • Measured in Hertz (one complete cycle of vibration per second) • Fundamental frequency changes constantly to produce intonation • Faster they vibrate the higher the pitch or frequency

  9. Laryngeal system • Greater the tension in the vocal cords • Thinner the vocal cords • Higher the frequency • Decrease in tension in the vocal cords • Thicker the vocal cords • Lower the frequency • The amount of air released will also change the loudness • Greater the amount air released softer the tone • Lesser the amount of air released the louder the tone • Forceful adduction increase the loudness

  10. Supralaryngeal system • Sound from the larynx has to be shaped or modulated by the supralaryngeal system • Complex sound is composed of a series of simple periodic sounds (pure tones) called harmonics • Each harmonic has a unique frequency and amplitude • Frequency is measured in cycles per second or Hertz (Hz) • Lowest harmonic is the fundamental frequency (Fo) – represents the rate of vocal cord vibration • Each subsequent harmonic is 120 Hz higher – 240 Hz, 360 Hz, etc.

  11. Supralaryngeal system • Amplitude represented in decibels (dB) of sound pressure level or intensity level • Amplitude harmonics vary in a predictable manner • Fo has the highest amplitude • Harmonics drop off at 12dB per octave • 12 dB drop between the fundamental frequency and first harmonic • Graph (amplitude spectrum) shows amplitude and frequency of each harmonic

  12. Supralaryngeal system • Sound traveling through the upper airways (supralaryngeal or vocal tract) is modulated by shape and size of the tract • Some harmonics are amplified and some reduced (damped) • Humming sound of phonation acquires overtones called resonant or formant frequencies • As the cavity changes to form different sounds resonance or formants also change

  13. Supralaryngeal system

  14. Supralaryngeal system • Articulation • Process of forming sounds by movement of the articulators • Vocal or supralaryngeal tract made up of tubes from the larynx to the opening of the mouth and nose • Oral cavity – lips to the back of the throat – changed by the articulators • Nasal cavity – from the nares to the velopharynx – fixed • Pharyngeal cavity between the vocal folds to the nasal cavity

  15. Supralaryngeal system

  16. Supralaryngeal system • Pharyngeal oral-nasal system • Pharynx • Divided into 3 cavities • Laryngopharynx, oralpharynx and nasopharynx • Direction of sound determined by the position of the velum (soft palate) • Velopharynx – velum (extension of the hard palate) and pharyngeal walls • Open position – nasal radiation for nasal sounds • Closure of the velopharyngeal port for oral sounds • Upward movement of the velum • Inward movement of the pharynx • Different types of movements • Cleft palate or short palate causes hypernasality

  17. Supralaryngeal system • Articulation • Coordination of fixed (teeth, alveolar ridge, hard palate) and mobile (tongue, jaw, and soft palate) articulators • Upper jaw or maxilla and the mandible have teeth which help to produce sounds such as /’/ /;/ /f/ /v/ • Alveolar ridge –bony shelf of the maxilla help to produce sounds such as /t/, /d/, /z/ and /s/ • Hard palate which extends from the alveolar ridge helps to produce /c/ /y/, /j/,/./

  18. Suprapharyngeal system • Oral cavity • Lower jaw or mandible – moves the lower lip and tongue • Tempromandibular joint – hinge like movement • Up and down as well as slightly forward and backward and side to side • Produces vowel sounds such as /e/, /i/, /o/ • Movements produced by muscles • Temporalis • Masseter • Geniohyoid • Mylohyoid

  19. Suprapharyngeal system • Tongue • Most important articulator • Shortened, lengthened, widened, narrowed, flattened and thickened • No skeleton – skeletal support from the hyoid bone and the jaw • Attached to the palate, pharynx and the epiglottis • Capable of complicated movements due to its own musculature • Body – main bulk – vowel production • Tip – apex – 50% of consonants • Blade – behind the tip – small number of sounds (/c/) • Dorsum – back – velar sounds • Root – front wall of the pharynx

  20. Supralaryngeal system • Oral cavity • Lips • Upper and lower lips contribute by opening and closing the oral cavity • Lower lip moved by the jaw – greater movement than the upper lip • Allows production of sounds such as /p/, /b/, and /m/

  21. Phonetics • Four or five descriptors typically used to classify consonants • Voicing • Nasality • Manner of articulation • Place of articulation • Secondary articulation • /n/ is a voiced, alveolar, nasal, stop • /f/ is a unvoiced, labiodental, fricative • Vowels are classified according to 3 characteristics • Height – high, mid, low • Frontness/backness – front, central or back • Lip shape – spread, rounded, normal • All vowels are voiced,

  22. Phonetics • Suprasegmentals • Classified according to: • Loudness • Pitch • Duration • Subject (noun) vs. subject (verb) • Emphasis called stress • Intonation used to differentiate between a statement and a question (it’s a good time vs. it’s a good time?)

  23. Language • Complex and dynamic system of conventional symbols that is used in various modes for thought and communication • Langauge evolves within specific historical, social, and cultural contexts • Language is rule governed • Phonology • Morphology • Syntax • Semantic • Pragmatic • Language learning is determined by biological, cognitive, psychosocial and environmental factors • Effective use of language requires understanding of human interaction (sociocultural roles, nonverbal cues and motivation) • Multifaceted behavior that is under constant change • New advances in technology • Dialects

  24. Language structure • Phonology is the rules that govern combination of phonemes or sounds • Morphology is the study word structure • Free morphemes (e.g., dog) • Bound morphemes (e.g., s) • Syntax of the word order of language • Subject followed by a verb which is followed by an object • Semantics • Referential meaning – meaning assigned to individual words (the word car induces a mental picture of a car), adult vocabulary of 80,000 words • Relational meaning – combination of referents • Figurative meaning

  25. Language structure • Pragmatics – rules for talking or the rules for what we say and how we say it • Speech act conforms to the context • Initiation • Turn taking • Commenting • Requesting • Termination • Repair

  26. Prelinguistic development • Characterized by child’s exploration of his environment • Cognitive, motor, and social domains develop in parallel to this development • At the end of this period the child learns to use words as referents (abstract symbols of actual referents) • First three months • Human voice calming effect when the infant is upset • Caregivers constantly provide stimulation in the form of auditory and visual input • Develops into an early schema • Crying is used to signal hunger or discomfort which will result is satisfaction of the need (caregiver will produce a bottle) • Vowels emerge during periods of satisfaction

  27. Prelinguistic development • Vowels are combined with back of throat sounds (/k/ and /g/) in the second month (called vocal play or cooing) • Prolongation of vowel sounds appears next • Turning head towards a voice and responding vocally to the speech of caregivers is also observed • http://www.youtube.com/watch?v=k2YdkQ1G5QI • http://www.youtube.com/watch?v=Btg9PiT0sZg&feature=related

  28. Prelinguistic development • Fourth to the twelfth month • http://www.youtube.com/watch?v=EPKum-YIWnw&feature=related • Consonant vowel combinations are strung together and practiced during times of comfort and content (babbling) • Sounds produced are not specific to the native language • Emergence of suprasegmental features (rhythm and flow) • Five to nine months the child expands on prelinguistic behavior

  29. Prelinguistic development • Variegated babbling replaces the repetitive babbling • http://www.youtube.com/watch?v=xaZSnwD_Zik&feature=related • Echolalia emerges towards the end of this period • Child attempts to imitate the caregiver’s utterances • http://www.youtube.com/watch?v=qS3GVCcIIKg&NR=1 • Meaning is not associated with these imitations • Infant understands angry intonations, his name and some words • They start to pay attention to conversation

  30. Language development • 12 months to 48 months • Single word utterances • First words emerge at approximately 12 months of age • Child uses single words (holophrases) just as competent speakers do to convey meaning relations • Relations are context based and the meaning is about the here and now • Object names and actions (e.g., eat for hungry) • Consonant vowel or vowel consonant combinations • Continues until 18 months of age • Understands more words than he produces • First 50 words are holophrases • Not aware of the single sounds that form the words • After 50 words they become more aware of the phonology and start to combine sounds in a variety of ways to form different words

  31. Language development • Two word utterances • 18 months to 24 months • Best studied within the context the utterances are produced (mommy shoe may mean different things in different contexts) • Morphological stage • Marked by expansion in utterance length • 27 to 30 months • Begin to produce phrases (my doggie) and clauses (my doggie eat) • Preparation for adult sentence structure (agent-action-object) • Inflections also appear to change the type and the meaning of the sentence • Caregivers are constantly stimulating the infant • Caregivers speak with less complex language with children • They provide expansions

  32. Language Development • Development of syntax • 31 to 34 months • Continue to add detail • Development of questions and imperatives (with appropriate word order) • Engage in conversations • Take turns, repair may or may not be successful • Sentence embedding • Phrases and clauses are embedded within each other to create more complex utterances (put it under the table or I like the boy who helped) • Pragmatics continues to improve (more turns during conversation and the meaning of pausing - to pause for the communication partner to respond and that it is signal for the end of the utterance)

  33. Language development • Co-joining sentences • Complete utterances • Begin to consider the perspective of the listener • Continue to embed and start cojoining sentence (I like cookies and I ate them all) • Refining language skills • School experience places the child in a different environment with different interactions • Cognition continues to play a role • Formalizes the language channels by learning to read, write, and spell • Uses language now to learn other concepts • Development of metalinguistics (assess phonological, syntax and semantic rules)

  34. Communication disorders • Developmental delays or acquired problems • 17% have communication disorders • 11% have some type of hearing loss • 6% a speech disorder • Speech disorder includes disorders of voice, articulation and fluency • Language disorder refers to comprehension and production of language

  35. Classification of communication disorders

  36. Language disorders • Language disorders in children • Difficulty in acquiring language • Cognitive impairment/developmental delay • Language impairment of varying degrees • As they grow the gap between their chronological age and language age continues to expand • Expressive language is shorter in length and less complex • Semantics and pragmatics are also a problem

  37. Language disorders • Autism • Social interaction • Caregivers report that the child started to learn language but then stopped • Exhibit echolalia • Usual or peculiar differences • Person stores and produces the utterances but does not process the utterances internally • Hearing impairment • Severity of language impairment depends on the type and severity of the hearing loss • Evaluated by an audiologist • Appropriate hearing may be prescribed • Hearing aids apply hearing but they do not restore hearing • Cochlear implants give direct stimulation to the cochlear • Supplement their language with speech reading and manual signs

  38. Language disorders • Language disorders in children • Specific language impairment • No cognitive, social, sensory, or motor problems • Demonstrate delays in language development • Lack of achieving linguistic milestones • Comprehend more than they produce • Difficulties extracting irregularities of language • Morphological disorders are evident • Vocabulary growth might also be a problem • Pragmatics may also be affected

  39. Language disorders • Neglect and abuse • Lack of maternal interaction has a negative effect on language development • Pragmatics is a severe problem • They do not initiate and restrict their utterances in conversation • Traumatic brain injury • Effect on language varies with the site of lesion, degree and age of insult • Cognitive deficits such as attention, memory, perception, organization and problem solving are also affected • I million children and adolescents incur TBI • Language deficits include deficits in comprehension and difficulty with figurative language such as idioms, metaphors and proverbs • Problems with story grammar and sequencing parts of a narrative may also be affected

  40. Language disorders • Language disorders in adults - Aphasias • Disruption of blood supply to the brain • Damage to neural tissue • Degenerative disease • Other problems co-exist with language impairments (poor judgment, sensory or motor impairments, memory problems) • Associated swallowing or motor speech disorder

  41. Language disorders • Fluent or Wernicke's aphasia http://www.youtube.com/watch?v=aVhYN7NTIKU) • Non-fluent or Broca’s aphasia (http://www.youtube.com/watch?v=1aplTvEQ6ew)

  42. Language disorders • Augmentative and alternative communication • If the person is not capable of developing functional speech, they may need to use an AAC system • Total communication approach • No tech (manual sign language) • Low tech (manual communication boards) • Mid tech (static display devices) • High tech (dynamic display devices) • Caregivers feel that use of AAC prevents further development of language but it only enhances language development • Strategies need to be taught on how to use the AAC systems

More Related