400 likes | 487 Vues
Results on 24,25,26 Mg(n, g ) and proposals Lisboa, 13-15 December 2011. Introduction / Motivation Results on 24,25,26 Mg(n, g ) Astrophysical implications s-process Constraints on 22 Ne( a ,n) 25 Mg Proposal for future measurements 25 Mg(n, g ) and 25 Mg(n,tot)
E N D
Results on 24,25,26Mg(n,g) and proposals Lisboa, 13-15 December 2011
Introduction / Motivation Results on 24,25,26Mg(n,g) Astrophysical implications s-process Constraints on 22Ne(a,n)25Mg Proposal for future measurements 25Mg(n,g) and 25Mg(n,tot) 25Mg(n,a) CHALLENGE! Outline
Introduction The s-process and Mg stable isotopes
Introduction The s-process and Mg stable isotopes “Main component” 22Ne(,n)25Mg is a neutron source in AGB stars: 1Msun < M < 3Msun • kT=8 keV and kT=25 keV
Introduction The s-process and Mg stable isotopes “Main component” 22Ne(,n)25Mg is a neutron source in AGB stars: 1Msun < M < 3Msun • kT=8 keV and kT=25 keV “Weak component” 22Ne(,n)25Mg is the mainneutron source in massive stars: M > 10 – 12Msun • kT=25 keV and kT=90 keV Other important reactions:22Ne(,g)26Mg, 25Mg(n,g)26Mg, 26Al (n,p)26Mg
Motivations • (24),25,26Mg are the most important neutron poisons due to neutron capture on Mg stable isotopes in competition with neutron capture on 56Fe that is the basic s-process seed for the production of heavy isotopes. • Several attempts to determine therate for the reaction 22Ne(,n)25Mg either through direct 22Ne(,n)25Mg measurement or indirectly, via 26Mg(,n)25Mg or charged particle transfer reactions. In both cases the cross-section is very small in the energy range of interest. • The main uncertainty of the reaction rate comes from the poorly known property of the states in 26Mg. Information can come from neutron measurements (knowledge of J for the 26Mg states). • The production of 26Al in the cosmos the main production mechanism is affected by uncertainties of several cross sections, in particular 24Mg(n,g)
Resonance shape analysis Transmission ORELA Capture n_TOF
MACS of 24Mg KADoNis This work (Resonance + DRC) sg(kT=5 keV)= 0.11 mb sg(kT=30 keV)= 3.3±0.4 mb sg(kT=80 keV)=2.7 mb sg(kT=5 keV)= (0.17+0.04)±0.04 mb sg(kT=30 keV)=(3.7+0.1)±0.2 mb sg(kT=80 keV)=(2.6+0.2)±0.2 mb • Uncertainty reduced to 5% • p-wave Direct Radiative Capture (DRC) included
MACS of 25Mg KADoNis This work (Resonance + DRC) sg(kT=5 keV)= 4.8 mb sg(kT=30 keV)= 6.4±0.4 mb sg(kT=80 keV)=4.4 mb sg(kT=5 keV)= (4.9+0.03)±0.6 mb sg(kT=30 keV)=(4.0+0.1)±0.6 mb sg(kT=80 keV)=(1.8+0.1)±0.3 mb • Uncertainty INCREASED to 15 % • p-wave Direct Radiative Capture (DRC) included
MACS of 26Mg KADoNis This work (Resonance + DRC) sg(kT=5 keV)= 0.1 mb sg(kT=30 keV)= 0.126±0.009 mb sg(kT=80 keV)=0.226 mb sg(kT=5 keV)= (0.067+0.02)±0.001 mb sg(kT=30 keV)=(0.09+0.05)±0.01 mb sg(kT=80 keV)=(0.29+0.08)±0.04 mb Activation • p-wave Direct Radiative Capture (DRC) included
MACS of 26Mg Activation Experiment • Normalization of the DRC calculations
MACS of 26Mg TOF Experiment • Check on the mass of the sample
Astrophysical implication s-process abundances Reduced poisoning effect. Lower MACS of 25Mg higher neutron density • KADoNiS • Present work Abundance distribution of the weak s-process Small impact on AGB abundances
Astrophysical implication Constraints for the 22Ne(a,n)25Mg reaction MeV Only natural-parity (0+, 1-, 2+, 3-, 4+, …) states in 26Mg can participate in the 22Ne(,n)25Mg reaction
Astrophysical implication Constraints for the 22Ne(a,n)25Mg reaction MeV MeV s-wave Jp= 2+, 3+ p-wave Jp= 1-, 2-, 3-, 4- d-wave Jp= 0+, 1+,2+, 3+, 4+, 5+ States in 26Mg populated by 25Mg(n,g)reaction
Astrophysical implication 22Ne(a,n)25Mg • a-particle energy • Lab.
Astrophysical implication 22Ne(a,n)25Mg T= (0.1-1.0)×109K • a-particle energy • Lab.
Astrophysical implication 22Ne(a,n)25Mg 0.5 0.6 0.9 1
Astrophysical implication 22Ne(a,n)25Mg 11.037 11.207 11.376 Ex (MeV) • 26Mg* energy • CM 0.5 0.6 0.9 1
Astrophysical implication 22Ne(a,n)25Mg 11.037 11.207 11.376 Ex (MeV) • 26Mg* energy • CM • 25Mg(n,a)22Ne, • 25Mg(n,g)26Mg, • 25Mg+n • Neutron energy Lab. 30 117 294 0 En (keV) 0.5 0.6 0.9 1
Astrophysical implication 22Ne(a,n)25Mg ? En (keV) 25Mg(n,a)22Ne 0 20 234 0.5 0.6 0.9 1
Astrophysical implication 25Mg(n,g)26Mg Constraints for the 22Ne(a,n)25Mg reaction
Astrophysical implication 25Mg(n,g)26Mg Constraints for the 22Ne(a,n)25Mg reaction
Astrophysical implication 25Mg(n,g)26Mg Constraints for the 22Ne(a,n)25Mg reaction R. Longland et al., Phys. Rev. C 80, 055803, 2009 “Nuclear resonance fluorescence” Before the 62.727-keV resonance was thought to be 1-
Astrophysical implication 25Mg(n,g)26Mg Constraints for the 22Ne(a,n)25Mg reaction Jp uncertain NO constraint for 22Ne(a,n)25Mg ?
Astrophysical implication 25Mg(n,g)26Mg Constraints for the 22Ne(a,n)25Mg reaction The reaction rate of the neutron source can be calculated:
Astrophysical implication 25Mg(n,g)26Mg Constraints for the 22Ne(a,n)25Mg reaction • The reaction rate of the neutron source can be calculated: • ER from (n,g) • Ga No information from neutron spectroscopy different values assumed
Astrophysical implication Constraints for the 22Ne(a,n)25Mg reaction With respect to recommended value from NACRE Upper limit for Ga Lower limit for Ga
Conclusions • Resonance parameters improved: • thermal cross section • doubtful resonances • corrected previous results • MACS and related Astrophysical implication • Constraints on the s-process neutron source 22Ne(a,n)25Mg
Future measurements Capture and transmission experiment on ENRICHED 25Mg (metallic!) sample: • Improve uncertainties • Determine Jp 24Mg
25Mg(n,a)22Ne The 25Mg(n,a)22Ne (Q-value=480 keV) cross-section is linked to the 22Ne(a,n)25Mg A B a b • Energy region of interest: • 0 < En < 300 keV
25Mg(n,a)22Ne • Energy region of interest: • 0 < En < 300 keV
25Mg(n,a)22Ne • Range of 480-keVa-particle few µm The corresponding areal density of a 1-µm thick 25Mg sample is 4.2×10-6 atoms/barn.
25Mg(n,a)22Ne n = 4.2×10-6 atoms/barn • = 1 mb • = 50% (using a thin magnesium layer and a 2p a particle detector) Pa = 80% the resulting counting rate, as a function of the neutron fluence is: CR=2×10-8 ×f For instance in • EAR-1, fEAR-1 = 7.1×104 neutrons are delivered per proton burst in the 10-100 keV energy range • EAR-2, fEAR-2 ≈ 1.8×106 • 1 signal / 25 bunches • 30 signals / hour
Detector • Diamond • MicroMegas • Silicon • Compensated ionization chamber • …
Conclusion GOOD IDEAS are WELCOME
Cristian Massimi Dipartimento di Fisica massimi@bo.infn.it www.unibo.it