630 likes | 641 Vues
Learn how to draw conclusions about a population using results from a random sample. Understand the concept of reasonably likely and rare events, and estimate confidence intervals for sample proportions.
E N D
Chapter 8 Inference for Proportions
Inference: using results from a random sample to draw conclusions about a population
In this chapter, you will use your understanding of sampling distributions developed in Chapter 7
One basic fact about sampling distributions will be used over and over again
If the sampling distribution can be considered approximately normal, 95% of all the sample means (or sample proportions) will fall within 1.96 standard errors of the population mean (or population proportion).
Section 8.1 Estimating a Proportion with Confidence
Reasonably Likely and Rare Events Reasonably likely events are those in the middle 95% of the distribution of all possible outcomes. The outcomes in the upper 2.5% and lower 2.5% of the distribution are rare events - - they happen, but rarely.
Reasonably Likely and Rare Events middle 95%
Reasonably Likely Events Given: (1) Random sampling from a binomial population is used repeatedly
Reasonably Likely Events Given: (1) Random sampling from a binomial population is used repeatedly (2) Both np and n(1- p) are at least 10
Reasonably Likely Events Given: (1) Random sampling from a binomial population is used repeatedly (2) Both np and n(1- p) are at least 10 -- have approx. normal distribution
Reasonably Likely Events Given: (1) Random sampling from a binomial population is used repeatedly (2) Both np and n(1-p) are at least 10 Then, 95% of all sample proportions p will fall within 1.96 standard errors of the population proportion, p.
Reasonably Likely Events or about 95% of sample proportions will fall within the interval where n is the sample size.
Suppose you flip a fair coin 100 times and define heads as success . (1) What are the reasonably likely values of the sample proportion p? (2) What number of heads is reasonably likely?
Suppose you flip a fair coin 100 times. (1) What are the reasonably likely values of the sample proportion p? (2) What number of heads is reasonably likely? What is p? What is n?
Suppose you flip a fair coin 100 times. (1) What are the reasonably likely values of the sample proportion p? (2) What number of heads is reasonably likely? What is p? probability of success is 0.5 What is n?
Suppose you flip a fair coin 100 times. (1) What are the reasonably likely values of the sample proportion p? (2) What number of heads is reasonably likely? What is p? probability of success is 0.5 What is n? 100 flips means sample size is 100
Suppose you flip a fair coin 100 times. (1) What are the reasonably likely values of the sample proportion p? =
Suppose you flip a fair coin 100 times. (1) What are the reasonably likely values of the sample proportion p? = 0.5 0.1 So, reasonable likely values of p are from 0.4 to 0.6
Suppose you flip a fair coin 100 times. (2) What number of heads is reasonably likely?
Suppose you flip a fair coin 100 times. (2) What number of heads is reasonably likely? In about 95% of the samples, the number of successes x in the sample will be in the interval about 40 to 60 heads
Suppose 35% of a population think that they pay too much for car insurance. A polling organization takes a random sample of 500 people from this population and computes the sample proportion, p, of people who think they pay too much for car insurance. (a) There is a 95% chance that p will be between what two values?
Suppose 35% of a population think that they pay too much for car insurance. A polling organization takes a random sample of 500 people from this population and computes the sample proportion, p, of people who think they pay too much for car insurance.
Suppose 35% of a population think that they pay too much for car insurance. A polling organization takes a random sample of 500 people from this population and computes the sample proportion, p, of people who think they pay too much for car insurance. (b) Is the organization reasonably likely to get 145 people in the sample who think they pay too much for car insurance?
(0.308, 0.392) (b) Is the organization reasonably likely to get 145 people in the sample who think they pay too much for car insurance?
(b) Is the organization reasonably likely to get 145 people in the sample who think they pay too much for car insurance?
Suppose 40% of students in your graduating class plan to go on to higher education. You survey a random sample of 50 of your classmates and compute the sample proportion, p, of students who plan to go on to higher education. (a) There is a 95% chance that p will be between what two numbers? (b) Is it reasonably likely to find that 25 students in your sample plan to go on to higher education?
(a) There is a 95% chance that p will be between what two numbers?
(b) Is it reasonably likely to find that 25 students in your sample plan to go on to higher education?
(b) Is it reasonably likely to find that 25 students in your sample plan to go on to higher education? (0.264, 0.536) Getting 25 out of 50 is a sample proportion of 0.5. This is a reasonably likely event from a population with p = 0.4.
Activity 8.1a, Page 470 1. Out of a sample of 40 students, 27 students could make the Vulcan salute with both hands at once. Write-up for this lab is due Monday. Justify your answers—simple yes or no answers earn no credit
A 95% confidence interval consists of those population proportions p for which the sample proportion p is reasonably likely.
A Complete Chart of Reasonably Likely Sample Proportions for n = 40
A Complete Chart of Reasonably Likely Sample Proportions for n = 40 p p
Page 473, D4 No. The horizontal line segment at p = 0.3 goes from about 0.158 to 0.442, so a sample proportion of 0.6 isn’t a reasonably likely result for a population with only 30% men.
Page 473, D6 The populations for which a sample proportion of 0.5 is reasonably likely are 35% to 65%. This can be written as 50% 15%.