1 / 39

Musical Gestures and their Diagrammatic Logic

DANS CES MURS VOUÉS AUX MERVEILLES J’ACCUEILLE ET GARDE LES OUVRAGES DE LA MAIN PRODIGIEUSE DE L’ARTISTE ÉGALE ET RIVALE DE SA PENSÉE L’UNE N’EST RIEN SANS L’AUTRE (Paul Valéry, Palais Chaillot). Musical Gestures and their Diagrammatic Logic. Guerino Mazzola U & ETH Zürich  

jania
Télécharger la présentation

Musical Gestures and their Diagrammatic Logic

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DANS CES MURS VOUÉS AUX MERVEILLES J’ACCUEILLE ET GARDE LES OUVRAGES DE LA MAIN PRODIGIEUSE DE L’ARTISTE ÉGALE ET RIVALE DE SA PENSÉE L’UNE N’EST RIEN SANS L’AUTRE (Paul Valéry, Palais Chaillot) Musical Gestures and their Diagrammatic Logic Guerino Mazzola U & ETH Zürich   guerino@mazzola.ch     www.encyclospace.org        

  2. LA VERITÉDU BEAU DANS LA MUSIQUE Guerino Mazzola musique mathématique summer 2006

  3. compositionde formules musique ~ ~ mathématique harmoniede gestes formule geste

  4. Ryukoku violin robot

  5. Waseda wabot II

  6. Musical Gestures • Gesture Categories • Diagram Logic

  7. Musical Gestures • Gesture Categories • Diagram Logic

  8. gestualize gestures sonicevents pitch h time e l position instrumentalinterface √ thaw freeze (MIDI) score analysis instrumentalize

  9. Ceslaw Marek: Lehre des Klavierspiels Atlantis-Verlag Zürich 1972/77

  10. Folie 2

  11. Every No play is a cross sectionof the life of one person, the shite. The shite is an appearance (demon, etc.)and a subject = one of the five elements (fire, water, wood, earth, metal) The waki is A kind of co-sub-ject and mirror person of the shite.

  12. The No gestures are reduced to the kata units and made symbolic. • This enables a richer communication than with common gestures. • Important: • Shite weaves a texture of fantasy usingcurves. • Waki describes reality usingstraight lines.

  13. 1 pitch  0 — time position 2 1  2 2  1 1 t. 2 + 1

  14. pitch E position √gestures H h E e √score l L

  15. PhD thesis of Stefan Müller (Mazzola G & Müller S: ICMC 2003) Symbolic score (a) Withoutfingering annotation (b) with fingeringannotation

  16. C3 DIN8996

  17. Independent symbolicgesture curvesfor fingers 2et 3 Curve parameter ton horizontal axis

  18. e = time y z   (t ) (t ) 6 6   (t ) (t ) 5 5   (t ) (t ) 4 4   (t ) (t ) 3 3     (t ) (t ) (t ) (t ) x 2 2 1 1 One hand  product  = 123456of 6 gestural curves in space-time (x,y,z;e) of piano j = 1, 2, ... 5: tips of fingers, j = 6: the carpus, 6 = root parameter t  sequence of points: (t) = (1(t),...,6(t)) two base vectors of fingersd2, d5from carpus.

  19. Geometric constraints: six boxes

  20. Have masses mj and maximal forces Kjfor fingers/carpus j. d2 space3 /de2 The Newton condition for fingers or carpus j is mj d2 spacej /de2(t) < Kj for all 0 ≤ t ≤ 1.

  21. Use cubic polynomials for gestural coordinates, i.e., 76 variables of coefficients: xj(t) = xj,3 t3 + xj,2 t2 + xj,1 t + xj,0  yj(t) = yj,3 t3 + yj,2 t2 + yj,1 t + yj,0  zj(t) = zj,3 t3 + zj,2 t2 + zj,1 t + zj,0  e(t) = e3 t3 + e2 t2 + e1 t + e0 Geometric and physical constraints polynomial inequalities: P(t) > 0 for all 0 ≤ t ≤ 1. These inequalities are guaranteed by Sturm chains.

  22. Symbolic gestural curve Physical gestural curve

  23. fingers 2, 3: geometric constraints fingers 2, 3: physical constraints

  24. Gestural interpretation of Carl Czerny‘s op. 500

  25. Musical Gestures • Gesture Categories • Diagram Logic

  26. h h‘ E = B W D = A V d v t t‘ w u q x = t(a) c a b x y = h(a) a y Quiver = category of quivers (= digraphs, diagram schemes, etc.) D Quiver(D, E)

  27. (Local) Gesture = morphism g: D  of quivers with values in a spatial quiver of a metric space X (= quiver of continuous curves in X) pitch     X Y X X time g position D X u g  f E h D A gesture morphism u:gh is a quiver morphism u, such that there is a continuous map f: X  Y whichdefines a commutative diagram: Gesture(g, h)category of (local) gestures

  28. A global gesture being coveredby threelocal gestures

  29. Quiver(F, ) = metric space of (local) gestures of of quiver F with values in a spatial quiver .   X X s t F E Hypergestures! r Renate Wieland & Jürgen Uhde:Forschendes Üben Die Klangberührung ist das Ziel der zusammenfassenden Geste, der Anschlag ist sozusagen die Geste in der Geste.

  30. g E h g h Hypergesture impossible! Morphism exists!

  31. Musical Gestures • Gesture Categories • Diagram Logic

  32. 1 = Alexander Grothendieck Quiver(, DE) Quiver(, DE) ≈ Quiver(E  , D) ≈ Quiver(E  , D) The category Quiver is a topos D  E D+E 0 = Ø DE

  33.  = v w x y T In particular:The set Sub(D) of subquiversof a quiver Dis a Heyting algebra: have „Quiver logic“. Ergo: Local/global gestures, ANNs, Klumpenhouwer-nets, and global networksenable logicaloperators (, , ,) Subobject classifier

  34. Heyting logic on set Sub(g) of subgestures of g h, k  Sub(g)h  k = h  kh  k = h  k h  k (complicated) h = h  Ø tertium datur: h ≤  h u: g1  g2Sub(u): Sub(g2)  Sub(g1) homomorphism of Heyting algebras = contravariant functor Sub: Gesture Heyting

  35. X c b IV V d a III II VI Fingers VII I e g f Fingers = Quiver(F, ) F = C-major hypergesture

  36. V IV I VI I  =

  37. Investigate the possible role and semantics of gestural logic inconcrete contexts such as local/global musical/robot gestures and more specific environments... (and more generally: Quiver logic for ANNs, Klumpenhouwer-nets, global networks). • Investigate a (formal) propositional/predicate language of gestureswith values in Heyting algebras of quivers. Problems:

More Related