1 / 10

Evolution Strategies

Evolution Strategies. An Example Evolution Strategy Procedure ES{ t = 0; Initialize P(t); Evaluate P(t); While (Not Done) { Parents(t) = Select_Parents(P(t)); Offspring(t) = Procreate(Parents(t)); Evaluate(Offspring(t));

jasia
Télécharger la présentation

Evolution Strategies

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Evolution Strategies • An Example Evolution Strategy Procedure ES{ t = 0; Initialize P(t); Evaluate P(t); While (Not Done) { Parents(t) = Select_Parents(P(t)); Offspring(t) = Procreate(Parents(t)); Evaluate(Offspring(t)); P(t+1)= Select_Survivors(P(t),Offspring(t)); t = t + 1; }

  2. Evolution Strategies • There are basically 4 types of ESs • The Simple (1+1)-ES • The (+1)-ES (The first multimembered ES) • The (+)-ES, and • The (,)-ES.

  3. Evolution Strategies:The Simple (1+1)-ES • The simple (1+1)-ES has the following attributes: • Individuals are represented as follows: • <xi,0,xi,1,…, xi,n-1,i>, where n is the number of variables • Offspring are created as follows: +i,j = k,j * exp(0 * N(0,1)); x+i,j = xk,j + +i,jN+i,j(0,1); Where j represents the jth variable. And where 0  1/sqrt(n)(Global Learning Rate) • Uses the 1/5 Success Rule to Adapt the Step Size: • If more than 1/5th of the mutations cause an improvement (in the objective function) then multiply  by 1.2, • If less than 1/5th of the mutations cause an improvement, then multiply  by 0.8.

  4. Evolution Strategies:The Simple (1+1)-ES • Procedure simpleES{ t = 0; Initialize P(t); /*  = 1,  = 1 */ Evaluate P(t); while (t <= (4000-)/){ for (i=0; i<1; i++){ Create_Offspring(<xi,yi,i>,<x+i,y+i,+i>): +i = i * exp(0 * N(0,1)); x+i = xi + +iN+i,x(0,1); y+i = yi + +iN+i,y(0,1); fit+i = Evaluate(<x+i,y+i>); } P(t+1) = Better of 2 individuals; t = t + 1; } }

  5. Evolution Strategies:The Simple (1+1)-ES • How is a simple (1+1)-ES similar to a (1+1)-Standard EP? • In what ways are the two different?

  6. Evolution Strategies:The (+1)-ES • Since the (+1)-ES is multi-membered, crossover can be used. • According to, Bäck, T., Hoffmeister, F, and Schwefel, H.-P. (1991). “A Survey of Evolution Strategies”, The Proceedings of the 4th International Conference on Genetic Algorithms, R. K. Belew and L. B. Booker Eds., pp. 2-9, Morgan Kaufmann. [can be found at: http://citeseer.nj.nec.com/back91survey.html] • Uniform Crossover (also referred to a discrete recombination) can be used on the variable values as well as the strategy parameter. • Adaptation of the step-size is not used in the (+1)-ES.

  7. Evolution Strategies: The (+1)-ES Procedure (+1)-ES{ t = 0; Initialize P(t); /* of  individuals */ Evaluate P(t); while (t <= (4000-)){ Create_Offspring(<xi,yi,i>,<x+i,y+i,+i>): +i = i * exp(0 * N(0,1)); x+i = xi + +iN+i,x(0,1); y+i = yi + +iN+i,y(0,1); fit+i = Evaluate(<x+i,y+i>); P(t+1) = Best  of the +1 individuals; t = t + 1; } }

  8. Evolution Strategies:The (+)-ES • In the (+)-ES, an individual, i, is represented as follows: • <xi,0,xi,1,…, xi,n-1,i,0,i,1,…,i,n-1>, where n is the number of variables • Offspring are created by as follows: • +i,j = k,j * exp(’* N(0,1) +  * N+i(0,1)); x+i,j = xk,j + +i,jN+i,j(0,1); • Where j represents the jth variable, • ’ 1/sqrt(2n) /* Global Learning Rate */ •   1/sqrt(2*sqrt(n)) /* Individual Learning Rate */ • The 1/5th success rule is used.

  9. Evolution Strategies:The (+)-ES Procedure (+)-ES{ t = 0; Initialize P(t); /* of  individuals */ Evaluate P(t); while (t <= (4000-)/){ for (i=0; i<; i++){ Create_Offspring(<xk,yk,k,x,k,y>, <x+i,y+i,+i,x,+i,y>): +i,x = k,x * exp(’* N(0,1) +  * N+i(0,1)); x+i = xi + +i,x N+i,x(0,1); +i,y = k,y * exp(’* N(0,1) +  * N+i(0,1)); y+i = yi + +i,y N+i,y(0,1); fit+i = Evaluate(<x+i,y+i>); } P(t+1) = Best  of the + individuals; t = t + 1; } }

  10. Evolution Strategies:The (,)-ES Procedure (,)-ES{ t = 0; Initialize P(t); /* of  individuals */ Evaluate P(t); while (t <= (4000-)/){ for (i=0; i<; i++){ Create_Offspring(<xk,yk,k,x,k,y>, <x+i,y+i,+i,x,+i,y>): +i,x = k,x * exp(’* N(0,1) +  * N+i(0,1)); x+i = xi + +i,x N +i,x(0,1); +i,y = k,y * exp(’* N(0,1) +  * N+i(0,1)); y+i = yi + +i,y N +i,y(0,1); fit+i = Evaluate(<x+i,y+i>); } P(t+1) = Best  of the  offspring; t = t + 1; } }

More Related