1 / 47

LHCb Physics Programme

CERN Theory Institute : Flavour as a window to New Physics at the LHC: May 5 – June 13, 2008. LHCb Physics Programme. Marcel Merk For the LHCb Collaboration May 26, 2008. Contents: The LHCb Experiment Physics Programme : CP Violation Rare Decays. LHCb @ LHC. b. b. b.

jatin
Télécharger la présentation

LHCb Physics Programme

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CERN TheoryInstitute: Flavour as a window to New Physics at the LHC: May 5 –June 13, 2008 LHCbPhysicsProgramme Marcel Merk For the LHCbCollaboration May 26, 2008 • Contents: • The LHCb Experiment • PhysicsProgramme: • CP Violation • Rare Decays

  2. LHCb @ LHC b b b b • √s = 14 TeV • LHCb: L=2-5 x 1032 cm-2 s-1 • sbb = 500 mb • inel / sbb = 160 • => 1 “year” = 2 fb-1 CERN LHCb ATLAS CMS ALICE A LargeHadronCollider Beauty Experiment forPrecisionMeasurements of CP-Violation and Rare Decays

  3. The LHCb Detector Muondet Muondet Calo’s Calo’s Magnet Magnet RICH-2 RICH-2 OT RICH-1 RICH-1 OT+IT VELO VELO Installation of major structures is complete

  4. A walk through the LHCb spectrometer…

  5. B-VertexMeasurement 144 mm 47 mm K K Bs K Ds  d 440 mm Example: Bs → Ds K s(t) ~40 fs Primary vertex  Decay time resolution = 40 fs Vertex Locator (Velo) Silicon strip detector with ~ 5 mm hit resolution  30 mm IP resolution • Vertexing: • Impact parameter trigger • Decaydistance (time) measurement

  6. Momentum and Mass measurement Momentum meas.: Mass resolution for background suppression 

  7. Momentum and Mass measurement p+, K Bs K K Ds  Primary vertex bt Momentum meas.: Mass resolution for background suppression Massresolution s ~14 MeV Bs→ Ds K Bs →Dsp 

  8. Particle Identification RICH: K/pidentification using Cherenkov light emission angle  • RICH1: 5 cm aerogel n=1.03 • 4 m3 C4F10 n=1.0014 RICH2:100 m3 CF4 n=1.0005

  9. Particle Identification RICH: K/pidentification;eg. distinguish Dsp and DsK events. Cerenkovlightemissionangle Bs → Ds K ,K Bs KK : 97.29 ± 0.06% pK : 5.15 ± 0.02% K K Ds  Primary vertex bt  • RICH1: 5 cm aerogel n=1.03 • 4 m3 C4F10 n=1.0014 RICH2:100 m3 CF4 n=1.0005

  10. LHCb calorimeters K Bs K Ds K  Primary vertex bt e h  • Calorimeter system : • Identifyelectrons, hadrons, neutrals • Level 0 trigger: high ETelectron and hadron

  11. LHCb muon detection K Bs K Ds K  Primary vertex btag m  • Muon system: • Level 0 trigger: High Pt muons • Flavourtagging: eD2 = e (1-2w)2 6%

  12. LHCb trigger Detector 40 MHz L0: high pT(m, e, g, h) [hardware, 4ms] 1 MHz HLT: high IP, high pT tracks [software] then full reconstruction of event 2 kHz Storage (event size ~ 50 kB) L0, HLT and L0×HLT efficiency Efficiency  Note: decay time dependent efficiency: eg. Bs → Ds K K Bs K Ds K  Primary vertex bt Proper time [ps]  12

  13. Measuring time dependent decays  Bs K Ds K  Primary vertex bt Measurement of Bsoscillations: • ExperimentalSituation: • Idealmeasurement (nodilutions) Bs->Ds–p+ (2 fb-1)

  14. Measuring time dependent decays  Bs K Ds K  Primary vertex bt Measurement of Bsoscillations: ExperimentalSituation: Idealmeasurement (nodilutions) + Realisticflavourtaggingdilution Bs->Ds–p+ (2 fb-1)

  15. Measuring time dependent decays  Bs K Ds K  Primary vertex bt Measurement of Bsoscillations: ExperimentalSituation: Idealmeasurement (nodilutions) + Realisticflavourtaggingdilution + Realisticdecay time resolution Bs->Ds–p+ (2 fb-1)

  16. Measuring time dependent decays  Bs K Ds K  Primary vertex bt Measurement of Bsoscillations: ExperimentalSituation: Idealmeasurement (nodilutions) + Realisticflavourtagging + Realisticdecay time resolution + Background events Bs->Ds–p+ (2 fb-1)

  17. Measuring time dependent decays  Bs K Ds K  Primary vertex bt Measurement of Bsoscillations: ExperimentalSituation: Idealmeasurement (nodilutions) + Realisticflavourtaggingdilution + Realisticdecay time resolution + Background events + Trigger and selectionacceptance Bs->Ds–p+ (2 fb-1) • Twoequally important aimsfor the experiment: • Limit the dilutions: goodresolution, tagging etc. • Preciseknowledge of dilutions

  18. Expected Performance: GEANT MC simulation • Simulation software: • Pythia+EvtGen • GEANT simulation • Detector response • Reconstruction software: • EventReconstruction • DecaySelection • Trigger/Tagging • Physics Fitting Used to optimise the experiment and to test physics sensitivities

  19. PhysicsProgramme LHCb is a heavy flavourprecision experiment searchingfornewphysics in CP-Violation and Rare Decays • CP Violation • Rare Decays

  20. CP Violation – LHCb Program q1 b q2 W− d, s W − b u,c,t d (s) q g q Bdtriangle Bstriangle • CP Program: Is CKM fully consistent for trees, boxes and penguins? • gmeasurementsfrom trees • gmeasurementfrompenguins • bsfrom the box: “Bsmixingphase” • bsin penguins V*ib Viq q u, c, t b W− W+ u, c, t q b Viq V*ib

  21. 1.a g +fsfrom trees: Bs→DsK • Time dependent CP violation in interference of bc and bu decays: Bs Bs Bs Bs Bs/Bs →Ds–K+ (10 fb-1) Time

  22. Bs→DsK • SincesametopologyBsDsK, Bs Dsp • combine samples to fit Dms, DGs • and Wtagtogetherwith CP phaseg+fs. 10 fb-1 data: Bs→Ds-p+ Bs→ Ds-K+ (Dms = 20) • Uselifetimedifference • DGs to resolvesome • ambiguities (2 remain). s(g+fs) = 9o–12o Decay Time →

  23. B →Dpand Bs→DsK • B  D(*)pmeasuresg in similarway as BsDsK • More statistics, but smaller asymmetry • No lifetimedifference: • 8 –foldambiguityforg solutions LHCb-2005-036 InvokingU-spinsymmetry (d↔s) canresolve these ambiguities in a combinedanalysis of DsK and D(*)pi (Fleisher) Canmakeanunambiguous extraction, dependingon The value of strongphases: s(g) < 10o (in 2 fb-1) U-spinbreaking

  24. 1.bgfrom trees: B→DK • Interferedecays bc with bu • to finalstatescommon to D0 and D0 color suppression • GLW method: • fD is a CP eigenstate common to • D0 and D0: fD= K+K-, p+p-,… • Measure: B→D0K, B → D0K, B→ D1K • Largeeventrate; smallinterference • MeasurementrBdifficult bc favoured Cabibbosupp. D0K– fDK– B– bu suppressed Cabibboallowed. D0K– • ADS method: • Usecommonflavour state fD=(K+ p –)Note: decayD0→K+p–is double Cabibbosuppressed • Lowereventrate; largeinterference Decay time independent analysis

  25. B→D(*)K(*) See talk of AngeloCarbone GLW: D KK (2 rates) ; ADS: D Kp( 4 rates) ; ADS: DK3p(4 rates) ; Normalization is arbitrary: 7 observablesfor 5 unknows: g, rB, dB, dDp , dD3p s(g) = 5o to 13o dependingonstrongphases. s(g) Alsounderstudy: B± → DK±with D → Kspp 80-12o B± → DK±with D → KK pp 18o B0 → DK*0with D → KK, Kp, pp 6o -12o B± → D*K±withD → KK, Kp, pp (high background) Dalitz analyses Overall: expectprecisionof s(g) = 5owith2 fb-1 of data

  26. 2. gfrom loops: B(s)→hh See talk of AngeloCarbone • Interfere b u tree diagram withpenguins: • Strong parameters d (d’), q (q’) are • strength and phase of penguins to tree. • WeakU-spinassumption : • d=d’+-20% , q, q’ independent • Assumemixingphasesknown 2 fb-1 Dms=20 BsK+K- BG s ( g ) ~10o Time

  27. 3. The Bd and BsMixingPhase Time dependent CP violation in interferencebetweenmixing and decay B Bs fCP fCP B Bs “Golden mode” s(sin2b ) ~ 0.02 “Yesterday’ssensation is today’s calibration and tomorrow’s background” – Val Telegdi

  28. Bsmixingphase 1. Pure CP eigenstates Low yield, high background 2. Admixture of CP eigenstates: Bs→J/y f “Golden mode”: Largeyield, nice signature However PS->VV requiresangularanalysis to disentagleh=+1 (CP-even) ,-1 (CP-odd)

  29. Full 3D Angularanalysis cos y = cosqf cosq f Studypossiblesystematics of LHCbacceptance and reconstructionondistributions.

  30. Bs→ J/y f signal backg sum • Simultaneouslikelihoodanalysis in time, mass, full 3d-angular distribution • Includemasssidebands to model the time spectrum and angular distribution of the background • Model the tresolution •  s (fs)=0.02 s(t)= 35 fs time s(M)= 14 MeV See talk of Olivier Leroy mass cosqf cos qtr ftr

  31. 4. b & bsfromPenguins • Compareobservedphases in tree decayswiththose inpenguins • Bsf frequires time dependent CP asymmetry • (PSVV angularanalysis a la J/yf ) See talk of Olivier Leroy

  32. PhysicsProgramme LHCb is a heavy flavourprecision Experiment searchingfornewphysics in CP-Violation and Rare Decays • CP Violation • Rare Decays

  33. Rare Decays – LHCb Program WeakB-decaysdescribedbyeffectiveHamiltonian: i=1,2: trees i=3-6,8: g penguin i=7: gpenguin i=9,10: EW penguin New physics shows up via new operators Oiormodification of Wilson coefficientsCicompared to SM. Studyprocessesthat are suppressed at tree level to look for NP affectingobservables: BranchingRatio’s, decay time asymmetries, angularasymmetries, polarizations, … LHCb Program: Look fordeviations of the SM picture in the decays: b sl+l- ; Afb(BK*mm) ,B+→K+ll (RK), Bs→fmm b  s g ; Acp(t) Bs fg, B→K*g, Lb→Lγ, Lb→ L*γ,B →r0g, B→wγ Bq l+l- ; BR (Bs mm) LFV Bq l l‘ (notreportedhere)

  34. 1. B0→K*0µ+µ- AFB(m2μμ) theory illustration m2[GeV2] • Contributionsfromelectroweakpenguins • Angular distribution is sensitive to NP 3 angles: ql, f ,qK AFB Observable: Forward-BackwardAsymmetry in ql Zero crossing point (so) wellpredicted: hep-ph:0106067v2

  35. B0→K*0µ+µ- • AFB(s), fast MC, 2 fb–1 s= (m)2 [GeV2]  See talk MiteshPatel EventSelection: 2 fb-1 Afb(s)  s0 s(s0) = 0.5 GeV2 Remove resonances • Systematicstudy: • Selectionshouldnotdistort m2mm • s0 point to first order notaffected

  36. 2. Bs→fg See talk MiteshPatel • Probes the exclusive b →s radiativepenguin • Measure time dependent CP asymmetry: b   (L) + (ms/mb)  (R) In SM b→s g is predominatly (O(ms/mb)) lefthanded Observed CP violationdependson the gpolarization Eventselection: Adir 0, Amix  sin2y sin2f, AD  cos 2ycosf tan y = |b→s gR| / | b→s gL| , cos f  1 SM: Statisticalprecisionafter 2 fb-1 (1 year) s(Adir ) = 0.11 , s (Amix ) = 0.11(requirestagging) s (AD) = 0.22 (notaggingrequired) Measuresfraction “wrong” gpolarization

  37. 3. Bs →m+m- See talk MiteshPatel • Bs mm is helicity suppressed • SM Branching Ratio: (3.35 ± 0.32) x 10 -9 • Sensitive to NP with S or P coupling hep-ph/0604057v5 EventSelection: MainBackgrounds: Suppressedby: bm, bmMass & Vertexresol. B hhParticleIdentification • With 2 fb-1 (1 “year”): • Observe BR: 6 x 10-9with 5 s • Assuming SM BR: 3s observation

  38. PhysicsProgramme LHCb is a heavy flavourprecision Experiment searchingfornewphysics in CP-Violation and Rare Decays • CP Violation • Rare Decays • + “Other” Physics

  39. “Other” Physics See the followingtalksforanoverview: RalucaMuresan: • CharmPhysics: Mixing and CP Violation Michael Schmelling: • Non CP ViolationPhysics: • B production, multiparticleproduction, deepinelasticscattering, …

  40. Conclusions LHCb is a heavy flavourprecision experiment searchingfor New Physics in CP Violationand Rare Decays A program to do this has been developed and the methods, includingcalibrations and systematic studies, are beingworked out.. • Rare Decays: 2 fb-1(1 year)* • BsK*mm s0 : 0.5 GeV2 • Bs gAdir , Amix : 0.11 • AD : 0.22 • Bsmm BR.: 6 x 10-9 at 5s We appreciate the collaborationwith the theorycommunity to continue developingnewstrategies. We are excitinglylookingforward to the data from the LHC. * Expectuncertainty to scalestatistically to 10 fb-1. Beyond: see Jim Libby’s talk on Upgrade CP Violation: 2 fb-1 (1 year)* gfrom trees: 5o - 10o gfrompenguins: 10o Bsmixingphase: 0.023 bsefffrompenguins: 0.11

  41. Backup

  42. LHCb Detector RICH-2 PID MUON ECAL HCAL RICH-1 PID vertexing Tracking (momentum)

  43. Display of LHCb simulatedevent

  44. FlavourTagging Performance of flavourtagging: Tagging power:

  45. Full table of selections Nominal year = 1012 bb pairs produced (107 s at L=21032 cm2s1 with bb=500 b) Yields include factor 2 from CP-conjugated decays Branching ratios from PDG or SM predictions

  46. BsDsK5 years data BsDs-K+ BsDs+K- BsbDs+K- BsbDs-K+

  47. Angleg in Summary

More Related