190 likes | 319 Vues
This document explores the economic implications of regulating market quantities versus prices, drawing on the foundational work of Weitzman, Baumol, and Oates. It delves into the uncertainties faced by producers and government in cost estimation and the decision-making processes for optimal production levels. We examine the benefits of deterministic models under reduced uncertainty in costs while highlighting the balance between price and quantity regulations, particularly in crucial sectors like healthcare. The analysis includes mathematical models and real-world examples to illustrate key concepts.
E N D
Prices vs. Quantities • Distributional Issues • Baumol and Oates (I believe) • Uncertainty • Weitzman, Martin. “Prices vs. Quantities.” Review of Economic Studies. Oct 1974 61(4): 477-491 • Simplify: make benefits deterministic (c) 1998 by Peter Berck
Before regulation profits are dark green and purple areas When regulation reduces Q Profits are the purple plus green areas (mcf > mr as drawn) Tax mc If, instead, tax T=mc-mcf at reg Q: Q is still Reg Q, green area is tax take and only purple remains as profit mcf mcp Unreg. Q Reg Q
The Uncertainty Problem • A private producer needs to be motivated to produce a good that is not sold in a market. • The government does not know the costs of producing the goods. • In particular it does not know a, a mean zero variance 2element of the cost function
Quantity Regulation • The firm can be told to produce a quantity certain, qr. • The level of benefits will be certain, since qr is certain, but • the level of costs isn’t known so the government will accept the uncertainty in the cost to be paid.
Price Motivation • Or, the Government can offer to pay a price, p for any units produced. • The firm will observe which cost they incur and react to the the true supply curve and set p=mc correctly, • but the level of production and level of benefits will be variable
Which to choose? • Professor Weitzman (to the best of my ancient memory) gave the example of medicine to be delivered to wartime Nicaragua. • Too little and people die • Too much not worth anything more • cost doesn’t matter that much • so, choose qr and get the right amount there for certain
In quantity mode, • the regulator chooses a quantity, qr, • then the state of nature becomes known, • then the firm produces and costs are incurred and benefits received. • B(q) is benefits and B’ is marginal benefit. • C(q,a) is cost and is a function of the state of nature, a.
B’ = MC • qr = argmaxq E( B - C). • Gives the optimal choice of qr. • Of course, E[B’ - Cq] = 0 at qr.
Approximate About qr • Approximate B and C about qr. • Note that the uncertainty in marginal cost is all in a, which is just a parallel shift in mc. Could also have a change in slope. • C(q,a) = c +( c’ + a) (q-qr) + .5 c’’ (q-qr)2 • B(q) =b + b’ (q-qr) + .5 b’’ (q-qr)2 • b and c are benefits and costs at qr
Obvious algebra. • mc = c’ + a+ c’’ (q-qr) • marginal cost • E[mc(qr,a)] = c’ + E[a] = c’ • mb = b’ + b’’ (q- qr) • marginal benefit • E[B’(qr) ] = b’ • FOC for qr implies b’=c’
B’ A picture. • mc = c’ + a+ c’’ (q-qr); here a takes on the values of • +/- e with equal probability • . qr c’+e + c’’ (q-qr) c’-e + c’’ (q-qr) c’ + c’’ (q-qr)
B’ As the slope of B’ approaches vertical DWL goes down Deadweight Loss using qr. +e Half the time each triangle is the DWL -e qr
The Supply Curve • The firm sees the price, p, and maximizes its profits after it knows a, so • p = mc • p = c’ + a + c’’ (q-qr) • Solving gives the supply curve: • h(p,a) = q = qr + (p - c’ - a) / c’’
The center chooses p … • The center chooses p to maximize expected net benefits: • p* = argmaxp E[ B(h(p,a) - C(h(p,a))] • B-C = b-c +(b’-c’- a)(q-qr) + (b’’-c’’).5(q-qr)2 • substitute q-qr = (p - c’ - a) / c’’ • = b-c - a(p - c’ - a) / c’’ • + (b’’-c’’).5 ((p - c’ - a) / c’’ )2 • Zero by FOC for qr
Take Expectations • B-C = b-c - a(p - c’ - a) / c’’ • + (b’’-c’’).5 ((p - c’ - a) / c’’ )2 • E[B-C] = b-c + 2/c” + • (b’’-c’’) {(p-c’)2 + 2}/ {2c”2} • 0 = DpE[B-C] = p - c’ • E[B-C] • = b-c + 2/c” + {(b’’-c’’)2}/ {2c”2}
Advantage of Prices over Quant. • Under price setting • E[B-C] • = b-c + 2/c” + {(b’’-c’’)2}/ {2c”2} • Less E[B-C] under quantity: = b-c • Advantage of price over quantity….
As the slope of B’ approaches vertical DWL goes up B’ Deadweight Loss using p*. +e Half the time each triangle is the DWL -e P*