1 / 27

ReaxFF for Magnesium Hydrides

ReaxFF for Magnesium Hydrides. Sam Cheung, Weiqiao Deng, Adri van Duin FF-subgroup meeting 9 Dec. 2003. Topic Overview. Hydrogen storage: a brief history Objectives ReaxFF: general principles Building the ReaxFF for Mg-hydride File Format Applications Conclusion.

kaili
Télécharger la présentation

ReaxFF for Magnesium Hydrides

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ReaxFF for Magnesium Hydrides Sam Cheung, Weiqiao Deng, Adri van Duin FF-subgroup meeting 9 Dec. 2003

  2. Topic Overview • Hydrogen storage: a brief history • Objectives • ReaxFF: general principles • Building the ReaxFF for Mg-hydride • File Format • Applications • Conclusion Free Powerpoint template from www.brainybetty.com

  3. Hydrogen storage: a brief history • Hydrogen Facts: • Hydrogen is an odorless and colorless gas. • BP of -252.77o C. • Density of 0.0899 grams/liter. • The most abundant element on earth but less than 1% • is in the form of H2 • Ways to produce H2: electrolysis, thermal dissociation of H2O, or • photochemical splitting of H2O • A clean synthetic fuel • H2O vapour as the only exhaust gas • Energy density by weight • Chemical energy per mass of Hydrogen (142 MJ/kg) • vs. that of other chemical fuels (liquid hydrocarbons ~ 47 MJ/kg) • 1 Kg of hydrogen contains the same amount of energy as 2.1 Kg • of natural gas or 2.8 Kg of gasoline. H2 Free Powerpoint template from www.brainybetty.com

  4. Saftey issues of hydrogen vs. other fuels • Lower risk of explosion • Nontoxic! Free Powerpoint template from www.brainybetty.com

  5. How large of a gas tank do you want? Storage remains a problem! Electric car with fuel cell (4kg H) Combustion engine (8kg H) Combustion engine (24 kg petrol) 400 km Volume Comparisons for 4 kg Vehicular H2 Storage Schlapbach & Züttel, Nature, 15 Nov. 2001

  6. Storing Hydrogen • Pressurized gas • - Must be intensely pressurized to several hundred atmospheres • (200 bar or more) • Stored in pressure vessel • Condensed liquid state • - Liquifying H2 requires substantial energy • - Boil-off is an issue for non-pressurized insulated tanks • - Insulation is bulky • Solid or liquid state as chemical hydrogen-rich compunds • - methanol, methane, carbon • - metal hydrides From Patrovic & Milliken (2003) Free Powerpoint template from www.brainybetty.com

  7. Materials with High Weight Hydrogen • Mg hydrides • light weight • low manufacture cost • high hydrogen-storage capacity • reversible reaction • Limitations • High dehydriding temperature • Slow adsorption kinetics • Surface oxidation of magnesium • Stability of the MgH2. • Possible solutions • Milling • Catalyst • Alloying with other metals Free Powerpoint template from www.brainybetty.com

  8. Reax FF: general principles Atoms Molecular conformations Design years Electrons Bond formation FEA Time MESO Grids MD Grains ReaxFF QC Empirical force fields 10-15 ab initio, DFT, HF Ångstrom Kilometres Free Powerpoint template from www.brainybetty.com Distance

  9. System energy description 2-body 3-body 4-body multibody Free Powerpoint template from www.brainybetty.com

  10. Key Features • To get a smooth transition from nonbonded to single, double and triple bonded systems ReaxFF employs a bond length/bond order relationship. Bond orders are updated every iteration. • 2. Nonbonded interactions (van der Waals, Coulomb) are calculated between every atom pair, irrespective of connectivity. Excessive close-range nonbonded interactions are avoided by shielding. • 3. All connectivity-dependent interactions (i.e. valence and torsion angles) are made bond-order dependent, ensuring that their energy contributions disappear upon bond dissociation. • 4. ReaxFF uses a geometry-dependent charge calculation scheme that accounts for polarization effects. Free Powerpoint template from www.brainybetty.com

  11. General Rules • MD-force field; no discontinuities in energy or forces even during reactions. • 2. User should not have to pre-define reactive sites or reaction pathways; potential functions should be able to automatically handle coordination changes associated with reactions. • Each element is represented by only 1 atom type in the force field; force field should be able to determine equilibrium bond lengths, valence angles etc. from chemical environment. Free Powerpoint template from www.brainybetty.com

  12. Parameterization of ReaxFF: • Strategy for parameterizing ReaxFF • Step 1 • -Identify interactions to be optimized • -Identify relevant systems • Step 2 • -Build QC-trainset for bond breaking and angle bending • cases for all relevant small cluster • Cluster (DFT B3LYP 6-31G**++) • -Perform QC simulations on condensed phases to obtain EOS • Periodic system (CASTEP GGA-PBE 4x4x2 k-space KE cutoff 380eV) • Step 3 • -FFopt and ReaxFF fittings • Step 4 • -Applications Free Powerpoint template from www.brainybetty.com

  13. Training set Cluster: Condensed phase: Free Powerpoint template from www.brainybetty.com

  14. File Format: geo trainset.in geo trainset.in BIOGRF 200 DESCRP mgh2_b1.2 RUTYPE NORMAL RUN BOND RESTRAINT 1 3 1.2000 7500.00 0.50000 0.0000000 FORMAT ATOM (a6,1x,i5,1x,a5,1x,a3,1x,a1,1x,a5,3f10.5,1x,a5,i3,i2,1x,f8.5) HETATM 1 Mg 0.00000 0.00000 0.02469 Mg 1 1 0.00000 HETATM 2 H 0.00000 0.00000 1.62594 H 1 1 0.00000 HETATM 3 H 0.00000 0.00000 -1.19525 H 1 1 0.00000 END BIOGRF 200 DESCRP mgh2_a140 RUTYPE NORMAL RUN ANGLE RESTRAINT 2 1 3 140.00 2500.00 1.0000 0.000000 FORMAT ATOM (a6,1x,i5,1x,a5,1x,a3,1x,a1,1x,a5,3f10.5,1x,a5,i3,i2,1x,f8.5) HETATM 1 Mg -0.00006 0.00000 -0.00002 Mg 1 1 0.00000 HETATM 2 H -0.00006 0.00000 1.71361 H 1 1 0.00000 HETATM 3 H 1.10148 0.00000 -1.31278 H 1 1 0.00000 END XTLGRF 200 DESCRP diamond-mgh2_opt RUTYPE CELL OPT 0 CRYSTX 3.93314 3.93314 3.93314 90.00000 90.00000 90.00000 FORMAT ATOM (a6,1x,i5,1x,a5,1x,a3,1x,a1,1x,a5,3f10.5,1x,a5,i3,i2,1x,f8.5) HETATM 1 H 2.94972 2.90674 0.94026 H 1 1 0.00000 HETATM 2 Mg 1.96646 1.96644 1.96644 Mg 1 1 0.00000 HETATM 3 H 0.98315 0.94017 1.02607 H 1 1 0.00000 HETATM 4 H 0.98321 2.99259 2.90679 H 1 1 0.00000 HETATM 5 H 2.94977 1.02602 2.99268 H 1 1 0.00000 HETATM 6 Mg -0.00011 -0.00013 -0.00012 Mg 1 1 0.00000 FORMAT CONECT (a6,12i6) END CHARGES mgh2 0.05 1 0.2519 mgh2 0.05 2 -0.1260 ENDCHARGES GEOMETRY mgh2 0.020 1 2 1.707 mgh2 0.500 2 1 3 179.000 ENDGEOMETRY ENERGY #Mg1-H3 (Mg-H 1.71) dissociation MgH2 10.0 + mgh2 /1 - mgh2_b1.2 /1 -51.5 7.0 + mgh2 /1 - mgh2_b1.4 /1 -14.0 5.0 + mgh2 /1 - mgh2_b1.5 /1 -5.4 2.0 + mgh2 /1 - mgh2_b1.6 /1 -1.2 2.0 + mgh2 /1 - mgh2_b2.0 /1 -6.8 1.0 + mgh2 /1 - mgh2_b4.1 /1 -73.1 #H-Mg-H angle in mgh2 1.0 + mgh2 /1 - mgh2_a160 /1 -1.41 2.0 + mgh2 /1 - mgh2_a140 /1 -5.74 4.0 + mgh2 /1 - mgh2_a120 /1 -13.47 10.0 + mgh2 /1 - mgh2_a100 / -25.72 10.0 + mgh2 /1 - mgh2_a80 /1 -44.57 25.0 + mgh2 /1 - mgh2_a60 /1 -73.47 25.0 + mgh2 /1 - mgh2_a40 /1 -73.29 # Relative Energy for Clusters 2.0 + mg2h4 /2 - mgh2 /1 -14.21 # Mg hcp (EOS) 20.0 + hcp0 /2 - hcp14 /2 -17.6 10.0 + hcp0 /2 - hcp17 /2 -6.2 2.0 + hcp0 /2 - hcp20 /2 -1.2 2.0 + hcp0 /2 - hcp_eq/2 -0.001 2.0 + hcp0 /2 - hcp27 /2 -1.3 5.0 + hcp0 /2 - hcp31 /2 -7.6 5.0 + hcp0 /2 - hcp35 /2 -10.8 ENDENERGY Free Powerpoint template from www.brainybetty.com

  15. Results: 1. Charge Analysis QC ReaxFF Muliken Charges (Debye) Atom number • ReaxFF reproduces charge for clusters. Free Powerpoint template from www.brainybetty.com

  16. Results: 2. MgH/MgH2 bond dissociation Mg (3s)2 Energy (kcal/mol) Bond distance (Å) • ReaxFF gives a fair description for the Mg-H bond dissocation Free Powerpoint template from www.brainybetty.com

  17. Results: 3. H-Mg-H Angle Bend Curve Free Powerpoint template from www.brainybetty.com

  18. Results: 4. Mg bulk metal Energy (kcal/mole-Mg) Volume/atom (Å3) • ReaxFF reproduces the EOS for the stable phases (BCC) • ReaxFF properly predicts the instability of the low-coordination phases (SC, Diamond) • Discrepancy in relative stability of FCC can be solved by further optimization. Free Powerpoint template from www.brainybetty.com

  19. Results: 4. Magnesium hydride crystal Energy (kcal/mol-MgH2) Volume/MgH2 (Å3) • ReaxFF reproduces the EOS for the stable phases (a-MgH2, g-MgH2, a-MgH2) Free Powerpoint template from www.brainybetty.com

  20. Relative stabilities of Mg bulk phase and Mg Hydride crystals • ReaxFF gives a fair description of the relative stability of Mg bulk phase and Mg-hydride • crystal phases (longer ffopt run needed for better description) • ReaxFF properly predicts the instability of the low-coordination phases (SC, Diamond) Free Powerpoint template from www.brainybetty.com

  21. H-Atomic Adsorption Calculated atomic energies, equilibrium bonding heights (above the top layer Mg atoms) for H absorption on the high-symmetry sites of Mg (0001). * M.C. Payne et. al., Chemical Physics Letters, Vol 212, p. 518 Free Powerpoint template from www.brainybetty.com Top Bridge Centre-FCC Centre-HCP

  22. Applications • Mg-particle aggregation • MgH2-particle anneal (300-0K) • Cook-off simulations on MgH2-particles • Strategy for improving hydrogen adsorption and • desorption process • Reduction of H2 dissociation barrier via Pt catalyst Free Powerpoint template from www.brainybetty.com

  23. Mg-particle aggregation Mg87-particles (300K NVT-MD) Free Powerpoint template from www.brainybetty.com

  24. MgH2-particle aggregation Mg87-particles (300K NVT-MD) Free Powerpoint template from www.brainybetty.com

  25. Cook-off simulations on MgH2-particles MD-heatup of Mg123H246-cluster. Start temperature: 300K heatup rate 0.002 K/fs Free Powerpoint template from www.brainybetty.com

  26. Designer catalysts for H2-release • Modify Mg*-H, Mg*-Mg* and Mg*-Mg force field parameters to optimize H2-release from nanoparticle • Find element that fits with optimal Mg*-characteristics H Mg* Mg Free Powerpoint template from www.brainybetty.com

  27. Comparison Mg0.7Mg0.3*H2 and MgH2-cookoff runs E(Mg*-H)=0.75*E(Mg-H) Mg* Mg • Weakened Mg*-H bond reduces H2-release temperature by about 150K Temperature regime: 300 to 1300K in 2.5 ps Free Powerpoint template from www.brainybetty.com

More Related