1 / 22

Stabilizing Climate by Biosphere indicated from past temperature record

Stabilizing Climate by Biosphere indicated from past temperature record. M. Yamauchi IRF, Kiruna. Climate is determined by subtle balance of large energy influx and large energy outflux . Considering the amount of total influx, the Terrestrial climate shows a surprising stability.

kalia-park
Télécharger la présentation

Stabilizing Climate by Biosphere indicated from past temperature record

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Stabilizing Climate by Biosphere indicated from past temperature record M. Yamauchi IRF, Kiruna Climate is determined by subtle balance of large energy influx and large energy outflux. Considering the amount of total influx, the Terrestrial climate shows a surprising stability.

  2. Feedback chain Solar input drive drive drive (via cosmic ray?) drive positive feedback Temperature CO2 negative feedback feedback? drive plant plankton H2O drive

  3. CO2 (red) and Temp (blue) from Ice Air Historical CO2 record from the Law Dome DE08, DE08-2, and DSS ice cores [data: Etheridge et al., 1998] http://cdiac.esd.ornl.gov/trends/co2/lawdome.html Surprising stability of T against CO2 change Histrical Isotop Temperature from Vostok Ice Core: Jouzel et al., 1987, 1993, 1996; Petit et al., 1999 [data: Petit et al., 2000] http://cdiac.esd.ornl.gov/trends/temp/vostok/jouz_tem.htm

  4. T (by D/H ratio) from 425 kyr ago - now T Good agreement with Milankovitch cycle (Kawamura et al., 2007)

  5. Rejection of outliers in O2/N2 data and orbital tuning (Kawamura et al.) (A) Summer solstice insolation at 77°S (B) O2/N2 Kawamura et al., 2007 (Nature, 23 August 2007 issue) http://www.nature.com/nature/journal/v448/n7156/abs/nature06015.html Red color : age is determined by O2/N2 Insolation is a key factor in determining the climate

  6. Cross spectral analysis (Kawamura et al.) Red: -O2/N2 (red) Blue: (A) summer solstice insolation at 77 °S; (B) Oice Kawamura et al., 2007 (Nature, 23 August 2007 issue) http://www.nature.com/nature/journal/v448/n7156/abs/nature06015.html

  7. T (by D/H ratio) from 425 kyr ago - now T Good agreement with Milankovitch cycle (Kawamura et al., 2007) ∆T = T(t) - T(t-dt) My interest is "stopping" effect of the variation

  8. Change of T between data points (Vostok) T(t)-T(t-dt) T(t+dt)-T(t) Histrical Isotop Temperature from Vostok Ice Core: Jouzel et al., 1987, 1993, 1996; Petit et al., 1999 [data: Petit et al., 2000] http://cdiac.esd.ornl.gov/trends/temp/vostok/jouz_tem.htm

  9. Change of T between data points (cont.) T(t+dt)-T(t) T(t+dt)-T(t) T(t)-T(t-dt) -3000 yr ~ -150 yr -423 kyr ~ -3 kyr Only 2 point positive 3 point or more positive Sudden increase of temperature cannot continue unless external forcing (insolation, human, solar activity) increases

  10. m t(yr) D in ice T(t) T(t)-T(t-dt) 74 2291 -431 1.16 -1.04 75 2331 -443.9 -0.98 2.14 76 2374 -446.7 -1.44 0.46 77 2418 -442.4 -0.73 -0.71 83 2670 -438.1 -0.02 -0.15 84 2713 -445.2 -1.19 1.17 85 2760 -449.9 -1.97 0.78 86 2805 -441.7 -0.61 -1.36 200 8135 -422.6 2.06 -1.76 201 8178 -431.4 0.59 1.47 202 8226 -440.1 -0.87 1.46 203 8276 -439.5 -0.78 -0.09 772 51159 -456.1 -3.77 -1.14 773 51230 -459.5 -4.34 0.57 774 51306 -465.8 -5.38 1.04 775 51384 -467.1 -5.6 0.22 776 51465 -470.8 -6.21 0.61 777 51549 -473.1 -6.6 0.39 778 51633 -472.1 -6.43 -0.17 1043 74484 -463.6 -4.74 -0.88 1044 74565 -471.4 -6.03 1.29 1045 74651 -476.8 -6.92 0.89 74738 -470.5 -5.87 -1.05 1090 78277 -458.5 -3.82 -2.24 1091 78353 -469.9 -5.71 1.89 1092 78437 -476.4 -6.79 1.08 1093 78522 -472.4 -6.12 -0.67 Raw data (Vostok's T) m t(yr) D in ice T(t) T(t)-T(t-dt) 1112 80020 -457.5 -3.66 -1.29 1113 80093 -464.8 -4.87 1.21 1114 80173 -473.9 -6.38 1.51 1115 80257 -472.3 -6.11 -0.27 1142 82213 -450.7 -2.54 -0.47 1143 82280 -457.4 -3.65 1.11 1144 82352 -464.6 -4.85 1.2 1145 82427 -463 -4.59 -0.26 1253 89973 -463.2 -4.69 -0.37 1254 90048 -468.8 -5.61 0.92 1255 90128 -475.3 -6.68 1.07 1256 90209 -470.9 -5.94 -0.74 1846 129324 -416.3 2.78 -0.26 1847 129374 -419.6 2.2 0.58 1848 129428 -428.7 0.67 1.53 1849 129486 -434.5 -0.31 0.98 1850 129545 -429.1 0.56 -0.87 2997 292732 -455.8 -3.46 -0.06 2998 292976 -457.1 -3.67 0.21 2999 293232 -463.7 -4.76 1.09 3000 293502 -466.5 -5.22 0.46 3001 293779 -467.3 -5.34 0.12 3002 294060 -468.9 -5.6 0.26 3003 294348 -471.7 -6.06 0.46 3004 294637 -468.7 -5.56 -0.5

  11. What do they indicate? 1. Largest external forcing (for climate change) = insolation in polar region (Kawamura et al., 2007). Very small change in solar radiation can cause a large effect. 2. Negative feedback (e.g., by biosphere) over few degree climate change has a short timescale, i.e., increased CO2/Temperature will decrease soon unless external forcing to increase CO2/Temperature keep increasing. If shortwave influx (to the polar region) is the key factor for climate change, then regulator for the influx is also important. Possible regulators (Norris and Wild 2006): (1) Cloud distribution change (reflect more shortwave in daytime and shift longwave toward shorter wavelength in nighttime) (2) Aerosol change (reflect more shortwave)

  12. (1) Cloud change Diurnal mean removed Seasonal mean removed Norris, 2005, JGR

  13. (2) Aerosol effect (> cloud effect) Total influx of short wave at ground 1971~1986 1987~2002 Expected influx after cloud reflection Estimated loss by non-cloud reflector: aerosol? Norris, 2006, JGR

  14. Feedback chain Solar input drive drive drive (via cosmic ray?) drive positive feedback Temperature CO2 drive negative feedback feedback? Human plant plankton H2O drive

  15. Temperature: 1970-2006 increase shortwave influx decrease shortwave influx Data from Japanese Meteorological Agency http://www.data.kishou.go.jp/climate/cpdinfo/temp/index.html Japan world N.hemisphere. S.hemisphere

  16. Japan (1,4,8) August April January

  17. T (by D/H ratio) : -425 kyr ~ -350 kyr T ∆T = T(t) - T(t-dt)

  18. T (by D/H ratio) : -350 kyr ~ -275 kyr T ∆T = T(t) - T(t-dt)

  19. T (by D/H ratio) : -275 kyr ~ -200 kyr T ∆T = T(t) - T(t-dt)

  20. T (by D/H ratio) : -200 kyr ~ -125 kyr T ∆T = T(t) - T(t-dt)

  21. T (by D/H ratio) : -50 kyr ~ -0 kyr T ∆T = T(t) - T(t-dt)

  22. T (by D/H ratio) : -125 kyr ~ -50 kyr T ∆T = T(t) - T(t-dt)

More Related