160 likes | 301 Vues
A massive disk around the intermediate-mass young star AFGL 490 ?. Ø 100´´. Katharina Schreyer (AIU Jena, Germany) Thomas Henning (MPIA Heidelberg, Germany) Floris van der Tak (MPIfR Bonn, Germany) Annemieke Boonman (Univ. Leiden, NL) Ewine F. van Dishoeck (Univ. Leiden, NL).
E N D
A massive disk around the intermediate-mass young star AFGL 490 ? Ø100´´ Katharina Schreyer (AIU Jena, Germany) Thomas Henning (MPIA Heidelberg, Germany) Floris van der Tak (MPIfR Bonn, Germany) Annemieke Boonman (Univ. Leiden, NL) Ewine F. van Dishoeck (Univ. Leiden, NL)
Introduction – Motivation 2/9 • formation of high-mass stars – one of the unresolved • mysteries of the present research • dominant formation process: disk accretion or coalesence ? • recent detections of disks around massive protostars: • IRAS 20126+4104 (1.7kpc, Cesaroni et al. 1999, Zhang et al. 1998, B2) & • G 192.16-3.82 (2.0kpc, Shepherd et al. 2001, B2...3) • _disks are more massive and larger than disks around T Tauri and Herbig Ae stars Search for high-mass objects in early evolutionary states • survey of bright IRAS sources(Klein, Posselt, Henning, Schreyer: Poster) • one of these targets: AFGL 490
AFGL 490 — General Properties 3/9 K-band image • optical: diffuse nebulosity, • NIR: luminous source • D = 1 kpc,L= 1.4 – 4·103L8 • early B2..3 star, M= 8...10 M8 typical properties of a Becklin Neugebauer Object: - weak continuum flux at l1cm - broad & strong Bra and Brg (Bunn et al. 1995) ionized region 100 AU (Simon et al. 1981, 1983) AFGL 490
Texas telescope AFGL 490 — General Properties 25000 AU 4/9 embedded in a dense cloud core (e.g Kawabe et al. 1984, Snell et al. 1984) poorly collimated high-velocity outflow (e.g. Lada & Harvey 1981) previous interferom. observations presence of a huge disk ? (Mundy & Adelmann 1988, Nakamura et al. 1991) - l3mm cont.: 2500 x 1500 AU -13CO 1–0: 45000 x14000 AU Motivation: study of this disk-like structure Our Observations: used JCMT, IRAM 30m, PdBI OVRO 13CO 1 – 0 box: 55´´x 55´´ NMA
AFGL 490 — Observational Results: CS 2–1 PdBI 5/9 bar-like structure (2.5x0.4)104AU different outflow systems an unvisible jet enters the denser cloud material ? disk-like system around AFGL 490
large-scale high- velocity CO outflow 4000 AU Model of a typical disk of a Herbig Ae star (R = 400 AU) AFGL 490 — Comparison of the CS 2–1 linewings with : 6/9 • VLA 2cm continuum map (b) Speckle H-band image • (Campbell et al. 1986) (Hoare et al. 1996) - repeated 2cm + H band observations by Hoare (2001): at the moment a point source
A disk around AFGL 490 ? 7/9 Mass - from a Keplerian model – fit to the outer line wings: estimates Mdisk = 7...9 M8 inside R= 4000 AU(M=8 M8, i = 20°) - from the l3mmcontinuum (deconvolved point source): Mgas = 3...6 M8 inside R= 500 AU (Tkin = 100...150 K) M Mdisk dynamical / self-gravitational stability? lifetime? dynamical stability Toomre´s Q parameter (e.g. Stone et al. 2000): with epicylce frequency = (GM/r3)0.5 &surface density = Mdisk/R2disk when Q < 1: disk locally graviationally unstable, fragmentation AFGL 490:Rdisk= 300…4000 AU, Tdisk= 50…200 K, Mdisk= 3…10 M8 Q < 0.5
AFGL 490 — Estimate of the lifetime against: 8/9 Its known more evolved Be stars (tlife = 105…106 yrs) have no disks anymore (Natta et al. 1997) speculation about the destruction mechanism: • photoevaporation: • (weak wind model by Hollenbach et al. 1994): M=8 M8, Mdisk=6 M8 • Ly continuum flux = 3x1044s-1 tdestruction=108 yrs • (b) accretion onto the star: • tacc=M/M, with M=10-5 M8/yr(Palla & Stahler 1992), • M= 8 M8taccrection=8x105 yrs • - large compared with tdyn(outflow) = 2x104 yrs(Churchwell 1999) • - to build up a star with 8 M8M must have been larger in the past • (c) self-gravitation: • e.g. Adams et al. (1989), Laughlin & Bodenheimer (1994) – evolution of • disk with Q 1 : fragmentation within the time of the orbital period • (tdestruction=103–104 yrs) most important destruction mechanism • • •
AFGL 490 — Model Conclusions 9/9 inner free zone R = 50..100 AU a larger gas torus R 4000 AU feeds an inner (accrection) disk R 500 AU remnant of the flattened inner cloud core R 25000 AU further high- resolution observations and theoretical work are needed 25 000 AU
END END
AFGL 490 — Our Observations Single-dish Observations Mapping in - CS J = 5 – 4, 7 – 6, C18O 2 – 1: JCMT 15m, 1994 - CS 3 – 2, 2 – 1, C18O 2 – 1: IRAM 30m, 1995 - Continuum 450mm & 870 mm, SCUBA, 1999 - Set of molecular lines at [0,0] position Plateau de Bure Interferometer Observations Mapping in - CS 2 – 1 & continuum al l = 97.98 GHz - clean beam size: 2.73´´ 2.22´´ - primary beam 51´´
AFGL 490 — Observational Results IRAM 30m CS 2–1 PdB Interferometer K-band image (Hodapp 1994) + CS 2–1 primary beamØ51´´
AFGL 490 — Observational Results: Single-Dish • AFGL 490: • - embedded in a dense cloud core • CS maps: spherically symmetric • morphology • C18O maps: extended in north-south • similar to the continuum for • l 800m
AFGL 490 — Observational Results: l = 3mm PdBI Continuum green contours: > 3 s rms white contours: 1 s rms only one strong mm source
AFGL 490 — Position-velocity-maps • A simple model of Keplerian motion (Vogel et al. 1985) • Assumptions: • rotational equilibrium model: a central star + the • disk mass lineary increasing with the radius • Rdisk = 4´´ = 4000 AU, M = 8(1) M8 • Fit parameters: • Mdisk = 7...9 M8, inclination angle i = 20°