200 likes | 299 Vues
Role of neutron emission spectrometry on ITER and instrumental requirements Göran Ericsson
E N D
Role of neutron emission spectrometry on ITER and instrumental requirements Göran Ericsson E.Andersson Sundén, A.Combo2), S.Conroy, N.Cruz2), M.Gatu Johnson, L.Giacomelli, W.Glasser, G.Gorini1), C.Hellesen, A.Hjalmarsson, J.Källne, R.Pereira2), E.Ronchi, H.Sjöstrand, J.Sousa2), M.Tardocchi1), and M.Weiszflog Uppsala University [EURATOM-VR], Uppsala Sweden 1) Univ. of Milano-Bicocca and Istituto di Fisica del Plasma [EURATOM-ENEA/CNR], Milan, Italy 2) Instituto Superior Técnico [EURATOM-IST], Lisboa, Portugal. CONTENTS OF PRESENTATION 1 Introduction 2 ITER parameters from n spectrometry 3 Examples of n spectrometry results 4 NES capabilities (single sight-line) 5 LOS and interface considerations 6 Conclusion 1
Neutron diagnostic systems and functions Neutron diagnostics based on measurement of: • Neutron inclusive flux: n • Neutron collimated flux: Fn - cameras for neutron emission tomography - neutron emission spectrometry • Direct (d) and in-direct (s, scattered) neutron flux components at detector • n= d + s and Fn= Fd + Fs • Neutron diagnostic systems – multi-parameter measurements: • Fission chambers + activation foils • Cameras: RNC + VNC • Cameras + spectrometer • Systems of spectrometers • Recent progress spectrometers - Europe: • Two new n spectrometers operating at JET – TOFOR, MPRu (UU/VR) • Unfolding techniques and detailed calibration of NE213 (ENEA,PTB) • JET-EP2 – programs on compacts and digital electronics (ENEA, IST) • “Study of Neutron Spectrometers for ITER”, J.Källne (UU/VR) 2
Potential information in high power DT : • neutron emission spectroscopy + camera • _____________________________________________________________________________________ • A. Fuel ion kinetics • (a) Thermal (T) population • (1) reaction rate (Rt) • (2) density product ndnt • (3) temperature TT* • (b) Population with significant supra-thermal (ST) velocity components; as above but • (1) up to 4 ST reaction rate components (RST) besides RT • (2) relative densities of ST velocity components • (3) TT and TST temperatures (if Maxwellian, otherwise slowing down) • B. Confined a-particles • (1) amplitude of slowing down distribution* • (2) pressure • C. Collective motion of fuel ion populations • (1) toroidal rotation* • D. Fusion parameters • (1) power Pf *; will provide values for dd and dt reactions separately • (2) division of Pf into thermal and supra-thermal components • (3) fuel ion densities in the core (nd, nt and nd/nt*)+) • E. Other information • (1) the extended spectrum of direct and scattered neutrons from the plasma • _____________________________________________________________________________________ • * Denotes diagnostic functions listed as essential for measurement on ITER • +) Requires simultaneous measurement of 2.5-MeV neutrons from dd and 14-MeV from dt.
3 Some selected NES results from JET (MPR) • Ohmic phase – thermal Ti extracted • RF phase – isotropic, anisotropic HE components • LE component due to scattered n
Count rate power Spectral components thermal fraction Alpha knock-on neutrons Peak (energy) shift shown in pulses with different phasing of RF antenna
Count rate power Spectral components thermal fraction
Count rate power Spectral components thermal fraction Alpha knock-on neutrons Peak (energy) shift shown in pulses with different phasing of RF antenna
4 NES capabilities (single sight-line) • Energy calibration: • Independent and absolute calibration station • For toroidal rotation Dvtor < 10km/s • DE < 3 keV • Energy resolution (instrumental, derived, …) • For temperature Ti = 4 keV • dE/E = 2.5% • Sensitivity (S:B) • For AKN, RF, TBN S:B > 10000 • Time resolution in derived quantities (Ccap, LOS, e) • For Ti(t) Dt < 10 ms • For Qth/QtotDt < 200 ms • Separate direct and scattered flux • E range, low-En sensitivity benchmarking of n transp. calc.
Magnetic proton recoil • System in operation at JET • Classic nuclear physics instr. • Separate tasks: passive n-to-p, passive E det., active p counting • f(En) from f(xp) • Near-Gaussian response function • Abs. calibration in E and e • Flexibility, 1 < En < 18 MeV • Separate Fd and Fs, E bite 20% • dE/E = 2.5%, DE < 2 keV (10-4) • S:B > 10000 • Ccap > MHz • Dt < 5 ms (for Ti) @ 1 MHz • Size (>m3), magnetic, efficiency (0.5.10-4 cm2)
Magnetic proton recoil • System in operation at JET • Classic nuclear physics instr. • Separate tasks: passive n-to-p, passive E det., active p counting • f(En) from f(xp) • Near-Gaussian response function • Abs. calibration in E and e • Flexibility, 1 < En < 18 MeV • Separate Fd and Fs, E bite 20% • dE/E = 2.5%, DE < 2 keV (10-4) • S:B > 10000 • Ccap > MHz • Dt < 5 ms (for Ti) @ 1 MHz • Size (>m3), magnetic, efficiency (0.5.10-4 cm2)
Neutron detector test and calibration station: • MPRw: A w-detector can be developed to improve the time resolution and dynamic range of the diagnostic in, e.g., yield measurements. • MPRx:A test/calibration facility for flux detectors in well-characterized Fn(En)MPR MPRw/x
5 LOS considerations • Ideal case: 3 spectrometer system • co-, counter (NBI) tangential, radial • Next best: co-tangential and radial • Single instr: TBD • Present ITER design: radial LOS? • Previous studies: • NBI – counter-tangential best, co- OK • ICRH – radial best, tangential OK • AKN – co-tangential viewing best, radial OK • Qth/Qtot – dual LOS best, radial OK • Yield – tangential LOS best, radial OK
MPR needs 1010 n/cm2 on foil for full performance (n camera?)
Summary and conclusions • High-performance n spectrometer of MPR type: • State of the fuel ions: Ti, ST comp., AKN, vrot, … • Absolute, independent yield determination, Qth/Qtot • Absolutely calibrated (E,e) n detector test station • Scattered n flux for n transport calc. benchmarking • Interface issues, magnetics • THANK YOU !
Summary prel. capabilities and requirements @ 14 MeV * Derived from unfolding, not instumental as for others §Single peaks, prob. not weak (%) LE components
TOF-14 • Coincidence measurement, • n double scattering • Near-Gaussian resp. fcn • f(En) from f(tn’) • Calibration with gammas, • muons, sources • High efficiency, 0.01 cm2 ? • (14 MeV) @ dE/E = 2.5% • Ccap = 50 kHz (14 MeV) ? • Signal:accidentals = 100 (sensitivity) • Dt < 100 ms (for Ti) • Size (>m3), performance, complicated (100’s detectors)
Diamonds (NDD, CVD) • Detector in n ”beam” • Full En deposited: 12C(n,a)9Be • Radiation hard, high T oper. • dE/E > 2% • Ccap = MHz • Complicated resp fcn - • 9Be*, 12C(n,n), (n,3a n’) • f(En) from f(Q) • Individual detector calibration • Small size, low efficiency • Limited experience base • Resp.fcn, bandwidth, availability/cost, charge trapping n NDD
Scintillator ”compacts” (NE213) • Detector in n “beam” • n/g separation (PSD) • Complicated resp fcn – • H(n,p) single and multiple, • 12C(n,n), inelastic channels • Each detector calibrated at accelerator • f(En) from unfolding • Stability monitoring (Cn, T, t) • P.h. resolution 5-8% • dE/E = 1-2% (unfolded) ? • Sensitivity 2% (unfolded) ? • Ccap > 200 kHz ? • Dt < 250 ms (for Ti) ? • Calibration, stability, performance n n’ NE213