160 likes | 292 Vues
The EBEX (E and B Experiment) aims to explore cosmic microwave background (CMB) polarization through a long-duration balloon-borne mission. Utilizing 1476 bolometric transition edge sensors (TES) over three frequency bands (150, 250, 410 GHz), the experiment targets detection of inflationary B-mode signals and lensing B-modes with high precision. By implementing advanced polarimetric techniques, EBEX seeks to measure and subtract polarized dust emissions effectively. The results will provide crucial insights into the early universe and the properties of polarized foregrounds.
E N D
EBEXThe E and B EXperiment Will Grainger Columbia University Moriond 2008
Collaboration Columbia University Amber Miller Britt Reichborn- Kjennerud Will Grainger Michele Limon Harvard Matias Zaldarriaga IAS-Orsay Nicolas Ponthieu Imperial College Andrew Jaffe Lawrence Berkeley National Lab Julian Borrill McGill University Francois Aubin Eric Bisonnette Matt Dobbs Kevin MacDermid Oxford Brad Johnson SISSA-Trieste Carlo Baccigalupi Sam Leach Federico Stivoli University of California/Berkeley Adrian Lee Xiaofan Meng Huan Tran University of California/San Diego Tom Renbarger University of Minnesota/Twin Cities Asad Aboobaker Shaul Hanany (PI) Clay Hogen-Chin Hannes Hubmayr Terry Jones Jeff Klein Michael Milligan Dan Polsgrove Ilan Sagiv Kyle Zilic Weizmann Institute of Science Lorne Levinson APC – Paris Radek Stompor Brown University Andrei Korotkov John Macaluso Greg Tucker Yuri Vinokurov CalTech Tomotake Matsumura Cardiff Peter Ade Enzo Pascale
EBEX in a Nutshell • CMB Polarization Experiment • Long duration, balloon borne • Use 1476 bolometric TES • 3 Frequency bands: 150, 250, 410 GHz • Resolution: 8’ at all frequencies • Polarimetry with half wave plate • BLAST (+ BOOM, MAXIMA) balloon technologies
Science Goals • Detect (or set upper bound) in inflationary B-mode • T/S < 0.02 at 2σ (excluding systematic and foreground subtraction uncertainty) • Detect lensing B-mode • 5% error on amplitude of lensing power spectrum • Measure E-E power spectrum • Determine properties of polarized dust EBEX, 14 days
Dust Determination and Subtraction • Simulate CMB B, dust, noise • Reconstruct dust + CMB maps (using the parametric separation technique) • Less than 1/3 increase in error on recovered CMB over binned cosmic variance and instrument noise due to foreground subtraction for l=20 to 900. • Reconstruction of dust spectral index within 5% • Blue= INPUT dust model • Red= INPUT CMB + instrument noise + sample variance • Black dust = data + errors of reconstruction • Black CMB = variance of 10 simulations • No systematic uncertainties
Design 250 cm
Cryostat and Optics • Reflecting Gregorian Dragone telescope • Control of sidelobes: Cold aperture stop Stop + • Polarimetric systematics: Half Wave Plate • Efficiency: Detection of two orthogonal states
36 cm Focal Planes Single TES 738 element array 250 150 410 2.1 mm 3 mm Strehl>0.85 at 250 GHz Meng, Lee, UCB • Total of 1476 detectors • Maintained at 0.27 K • 3 frequency bands/focal plane • G = 10 pWatt/K • NEP = 1.1e-17 (150 GHz) • NEQ = 136 μK*rt(sec) (150 GHz) • msec,
Detector Readouts • SQUID arrays (NIST) • Digital Frequency Domain Multiplexing (McGill) FPGA Synthesizes Comb; Controls SQUIDs; Demodulates • LDB: 495 Watt for x12; 406 Watt for x16
Half Wave Plate Polarimetry • 5 stack achromatic HWP • 0.98 efficiency for 120< ν < 420 Ghz • 6 Hz rotation • < 10% attenuation from 3 msec time constant • Driven by motor outside cryostat via Kevlar belt • Supported on superconducting magnetic bearing
EBEX Scan • Scan is: • Constant elevation for 4 repeats, one Q,U per 1/3 beam, (0.7 deg/sec). • Step in elevation, and repeat; 102 times. • Repeat that 6 hour block on same patch of sky for 14 days. • Multiple visitations per pixel from various angles (i.e. crosslinking) on various timescales. • Relatively uniform coverage • Up to 10^8 samples/beam 17 deg p-p / 0.7 deg/sec x4 . . . . . 6 hours 102 steps All 150 GHz detectors, 14 Day
Gondola + Pointing Cable Suspension (a-la BLAST) Pointing System (BLAST, MAXIMA, Boom) Gondola integrated at Columbia U. Pointing tests ongoing
EBEX Summary + Schedule • 14 day flight • 420 deg2 • ~24,000 8’ pixels • Low dust contrast (4mK rms) • 796, 398, 282 TES detectors at 150, 250, 410 GHz • 0.7 mK/8’ pixel - Q/U; • 0.5 mK/8’ pixel – T • Currently integrating • detectors into cryostat in UMN • Pointing sensors onto gondola in CU • North American flight: Autumn 2008 • Long Duration (Antarctic) flight: Austral Summer 2009
Optics • Reflecting Gregorian Dragone telescope • Control of sidelobes: Cold aperture stop • wide range of ls probed. Stop + • Polarimetric systematics: Half Wave Plate • Efficiency: Detection of two orthogonal states
Design Blue – Synchrotron Pink – Dust Minimize synchrotron by going to high frequency, then only one foreground to deal with. 250 cm