610 likes | 812 Vues
Stationary Incompressible Viscous Flow Analysis by a Domain Decomposition Method. Hiroshi Kanayama, Daisuke Tagami and Masatsugu Chiba ( Kyushu University). Contents. Introduction Formulations Iterative Domain Decomposition Method for Stationary Flow Problems Numerical Examples
E N D
Stationary Incompressible Viscous Flow Analysis by a Domain Decomposition Method Hiroshi Kanayama, Daisuke Tagami and Masatsugu Chiba (Kyushu University)
Contents • Introduction • Formulations • Iterative Domain Decomposition Method for Stationary Flow Problems • Numerical Examples 1 million DOF cavity flow, DDM v.s. FEM A concrete example • Conclusions
Objectives • In finite element analysis for stationary flow problems, our objectives are to analyze large scale (10-100 million DOF) problems. Why Iterative DDM ? • HDDM is effective. • Ex. Structural analysis(100 million DOF: • 1999 R.Shioya and G.Yagawa )
Formulations • Stationary Navier-Stokes Equations • Weak Form • Newton Method • Finite Element Approximation • Stabilized Finite Element Method • Domain Decomposition Method
Finite Element Approximation 0 2 1 3
Stabilized Finite Element Method Stabilized Parameter
Domain Decomposition Method Stabilized Finite Element Method Decomposition i:corresponding to Inner DOF b:corresponding to Interface DOF
Interface DOF Solver by BiCGSTAB or GPBiCG Inner DOF Solver by Skyline Method
BiCGSTAB (1) Initialization (a) Set. (b) Solve . (c) Solve .
(2) Iteration (a) Solve. (b) Solve . (c) Compute .
(d) Solve. (e) Solve . (f) Compute .
Convergence check for .If converged • , If not converged go to (h). • (h) Compue . • (3)Construction of solution. • (a) Solve .
GPBiCG (1) Initialization (a) Set. (b) Solve . (c) Set and .
(2) Iteration (a) Solve. (b) Set . (c) Compute .
(d) Solve. (e) Set . (f) Compute .
(h) Convergence check for .If converged • If not converged go to (h). • (i) Compute . • (3)Construction of solution. • (a) Solve .
System Flowchart Converged? Read Data Skyline Method Analyze Analyze Analyze Change B.C. No BiCGSTAB Method Yes One More Analysis of Subdomains Newton Method Output Results
Disk Parent Part_1 Part_n Part_2 HDDM Parents only Whole domain Parts Subdomains
Adventure System Commercial CAD AdvCAD ・・・Configure AdvTriPatch ・・・Patch AdvTetMesh ・・・Mesh AdvBCtool ・・・Boundary Cond. AdvMetis ・・・DD (-difn 4) AdvsFlow ・・・Flow Analysis ・・・Visualization AdvVisual
1.0 1.0 0.0 1.0 Numerical Examples (The Cavity Flow Problem) Boundary Conditions
Domain Decomposition (8 parts, 8*125 subdomains) About 1,000 DOF/ subdomain 8 processors for parents Total DOF :1,000,188 Interface DOF: 384,817
Convergence of BiCGSTAB Precond.:Diagonal Scaling(Abs.) Criterion: 一回の反復が約5秒弱
(Nonlinear Convergence ) Iteration counts of Newton method Initial Value:Sol.of Stokes Criterion: 収束履歴(Newton法)
Visualization of AVS x2=0.5 Velocity Vectors Pressure Contour
Convergence of GPBiCG Precod.:Diagonal Scaling(with sign) Criterion: 一回の反復が約5.5秒弱
収束履歴(Newton法) Iteretion counts of Newton method Initial:Sol. of Stokes Criterion:
9 hours (BiCGSTAB)→ 1 hour 40 min.(GPBiCG) GPBiCG is a liitle faster than BiCGSTAB for small problems. High Reynolds number problems are not solved. Strong preconditioners may be required.
Domain Decomposition (2 parts,2*75 subdomains, ≒800 DOF/subdomain) Total DOF:119,164 Interface DOF: 42,417
収束履歴(Newton法) Iteration counts of Newton method Initial:Sol. of Stokes Criterion:
Computinal Conditions DDM(1) No.of Subdomins 64 No. of Nodes 9261 No. of DOF 37044 No. of Interface DOF 11718 DDM(2) No. of Subdomains 125 No. of Nodes 9261 No. of DOF 37044 No. of Interface DOF 14800
Mesh DDM(2) DDM(1)
The Vector Diagram and the Pressure Contour-Line on x2=0.5(Re:100) DDM(1) DDM(2) FEM
Relative Residual History of Newton Method (Re:100)
The Vector Diagram and the Pressure Contour-Line on x2=0.5(Re:1000) DDM(1) DDM(2) FEM