1 / 61

Chapter 5:

Chapter 5:. Digital Logic Design. Synchronous Sequential Logic. Combinational Circuit. Inputs. Outputs. Memory Elements. Combinational Circuit. Inputs. Outputs. Flip-flops. Clock. Sequential Circuits. Asynchronous Synchronous. Latches. SR Latch. Q = Q 0. 0. 0. 1. 0.

korene
Télécharger la présentation

Chapter 5:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 5: Digital Logic Design Synchronous Sequential Logic

  2. Combinational Circuit Inputs Outputs MemoryElements Combinational Circuit Inputs Outputs Flip-flops Clock Sequential Circuits • Asynchronous • Synchronous

  3. Latches • SR Latch Q = Q0 0 0 1 0 Initial Value

  4. Latches • SR Latch Q = Q0 Q = Q0 0 1 0 0

  5. Latches • SR Latch Q = Q0 Q = 0 1 0 1 0

  6. Latches • SR Latch Q = Q0 Q = 0 1 1 Q = 0 0 0

  7. Latches • SR Latch Q = Q0 0 Q = 0 0 Q = 1 1 1

  8. Latches • SR Latch Q = Q0 0 Q = 0 1 Q = 1 Q = 1 0 1

  9. Latches • SR Latch Q = Q0 1 Q = 0 0 Q = 1 Q = Q’ 1 0 1

  10. Latches • SR Latch Q = Q0 1 Q = 0 1 0 Q = 1 Q = Q’ Q = Q’ 0 1

  11. Latches • SR Latch No change Reset Set Invalid Invalid Set Reset No change

  12. Latches • SR Latch No change Reset Set Invalid Invalid Set Reset No change

  13. Controlled Latches • SR Latch with Control Input No change No change Reset Set Invalid

  14. Controlled Latches • D Latch (D = Data) Timing Diagram C D Q t Output may change No change Reset Set

  15. Controlled Latches • D Latch (D = Data) Timing Diagram C D Q Output may change No change Reset Set

  16. C CLK Positive Edge CLK Negative Edge Flip-Flops • Controlled latches are level-triggered • Flip-Flops are edge-triggered

  17. D Latch (Master) D Latch (Slave) D D C Q D C Q Q CLK Flip-Flops • Master-Slave D Flip-Flop Master Slave CLK D Looks like it is negative edge-triggered QMaster QSlave

  18. D Q Q Q D Q Flip-Flops • Edge-Triggered D Flip-Flop Positive Edge Negative Edge

  19. Q J Q K Flip-Flops • JK Flip-Flop D=JQ’+K’Q

  20. D T Q Q Q Q Q T J Q T K Flip-Flops • T Flip-Flop D=JQ’+K’Q D=TQ’+T’Q=T Q

  21. D T Q Q Q Q Q J Q K Flip-Flop Characteristic Tables Reset Set No change Reset Set Toggle No change Toggle

  22. D T Q Q Q Q Q J Q K Flip-Flop Characteristic Equations Q(t+1) =D Q(t+1) =JQ’ + K’Q Q(t+1) =TQ

  23. Q J Q K Flip-Flop Characteristic Equations • Analysis / Derivation No change Reset Set Toggle

  24. Q J Q K Flip-Flop Characteristic Equations • Analysis / Derivation No change Reset Set Toggle

  25. Q J Q K Flip-Flop Characteristic Equations • Analysis / Derivation No change Reset Set Toggle

  26. Q J Q K Flip-Flop Characteristic Equations • Analysis / Derivation No change Reset Set Toggle

  27. Q J Q K Flip-Flop Characteristic Equations • Analysis / Derivation Q(t+1) =JQ’ + K’Q

  28. Q R D Q Reset Flip-Flops with Direct Inputs • Asynchronous Reset

  29. Q R D Q Reset Flip-Flops with Direct Inputs • Asynchronous Reset

  30. PR Q D Q Preset Reset CLR Flip-Flops with Direct Inputs • Asynchronous Preset and Clear

  31. PR Q D Q Preset Reset CLR Flip-Flops with Direct Inputs • Asynchronous Preset and Clear

  32. PR Q D Q Preset Reset CLR Flip-Flops with Direct Inputs • Asynchronous Preset and Clear

  33. Analysis of Clocked Sequential Circuits • The State • State = Values of all Flip-Flops Example AB= 0 0

  34. Analysis of Clocked Sequential Circuits • State Equations A(t+1)=DA =A(t) x(t)+B(t) x(t) =Ax + Bx B(t+1)=DB =A’(t) x(t) =A’x y(t)=[A(t)+ B(t)] x’(t) =(A + B) x’

  35. Analysis of Clocked Sequential Circuits • State Table (Transition Table) 0 00 0 10 0 01 1 10 0 01 1 00 0 01 1 00 A(t+1)=Ax + Bx B(t+1)=A’x y(t)=(A + B) x’ t t+1 t

  36. Analysis of Clocked Sequential Circuits • State Table (Transition Table) t t+1 t A(t+1)=Ax + Bx B(t+1)=A’x y(t)=(A + B) x’

  37. Analysis of Clocked Sequential Circuits • State Diagram AB input/output 0/0 1/0 0/1 0 0 1 0 0/1 1/0 0/1 1/0 0 1 1 1 1/0

  38. D Q x A Q y CLK Analysis of Clocked Sequential Circuits • D Flip-Flops Example: 0 1 1 0 1 0 0 1 A(t+1)=DA =Ax y 01,10 0 1 00,11 00,11 01,10

  39. Analysis of Clocked Sequential Circuits • JK Flip-Flops Example: 0 0 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 1 0 0 0 1 1 JA = B KA = B x’ JB = x’ KB = A  x A(t+1)=JA Q’A + K’A QA = A’B + AB’ + Ax B(t+1)=JB Q’B + K’B QB = B’x’ + ABx + A’Bx’

  40. Analysis of Clocked Sequential Circuits • JK Flip-Flops Example: 0 0 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 0 1 1

  41. Analysis of Clocked Sequential Circuits • T Flip-Flops Example: 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 TA = B x TB = x y = A B A(t+1)=TA Q’A + T’A QA = AB’ + Ax’ + A’Bx B(t+1)=TB Q’B + T’B QB = x  B

  42. Analysis of Clocked Sequential Circuits • T Flip-Flops Example: 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 0/0 0/0 0 0 0 1 1/0 1/1 1/0 1 1 1 0 0/1 0/0 1/0

  43. Mealy and Moore Models Mealy Moore For the same state,the output does not change with the input For the same state,the outputchanges with the input

  44. Moore State Diagram State /Output 0 0 1 0 0 /0 0 1 / 0 1 1 1 1 / 1 1 0 / 0 1 0 0

  45. 1 0 0 0 0 /0 0 1 / 0 A x y 0 1 B 0 1 1 / 1 1 0 / 0 1 1 CLK Timing Diagram No effect x A 0 0 0 1 0 1 0 0 0 1 1 0 State B y

  46. A x y B CLK Timing Diagram 1/0 0/0 0/0 0 0 0 1 0/0 1/0 0/0 1 1 1 0 1/1 1/1 x A 1 0 State B y

  47. Design of Clocked Sequential Circuits • Example: Detect 3 or more consecutive 1’s 1 0 S0/0 S1/ 0 0 0 1 0 S3/ 1 S2/ 0 1 1

  48. 1 0 S0/0 S1/ 0 0 0 1 0 S3/ 1 S2/ 0 1 1 Design of Clocked Sequential Circuits • Example: Detect 3 or more consecutive 1’s 0 00 0 10 0 00 1 00 0 00 1 10 0 01 1 11

  49. Design of Clocked Sequential Circuits • Example: Detect 3 or more consecutive 1’s Synthesis usingDFlip-Flops 0 00 0 10 0 00 1 00 0 00 1 10 0 01 1 11 A(t+1)=DA (A,B, x) = ∑ (3, 5, 7) B(t+1)=DB (A,B, x) = ∑ (1, 5, 7) y(A,B, x) = ∑ (6, 7)

  50. Design of Clocked Sequential Circuits with D F.F. • Example: Detect 3 or more consecutive 1’s Synthesis usingDFlip-Flops DA (A,B, x) =∑ (3, 5, 7) = A x + B x DB (A,B, x) = ∑ (1, 5, 7) = A x + B’ x y(A,B, x) = ∑ (6, 7) = A B

More Related