1 / 22

Self-assembLY And Magnetism of nanocluster arrays

Self-assembLY And Magnetism of nanocluster arrays. Axel Enders Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience University of Nebraska, Lincoln, NE 68588 a.enders@me.com. Acknowledgement. R. Skomski , G. Rojas , X. Chen J.-S. Kim, J. Kim

korene
Télécharger la présentation

Self-assembLY And Magnetism of nanocluster arrays

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Self-assembLY And Magnetism of nanoclusterarrays Axel Enders Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience University of Nebraska, Lincoln, NE 68588 a.enders@me.com

  2. Acknowledgement R. Skomski, G. Rojas, X. Chen J.-S. Kim, J. Kim University of Nebraska – Lincoln J. Zhang, V. Sessi, J. Honolka, I. Brihuega, C. Michaelis, and K. Kern Max-Planck-Institut für Festkörperforschung Stuttgart, Germany K. Fauth, G. Schuetz (Stuttgart) S. Bornemann, H. Ebert (Muenchen) Buchsbaum, P. Varga (Wien)

  3. Outline • Self-Assembled Model Structures of Fe on Pt • Adatoms, Chains, Surface Alloys • Local Coordination, Hybridization and Magnetism • Deposited Co Clusters • Substrate-induced Anisotropy • Magnetic Moment of Rh Clusters in Contact with Surfaces • Ordering on Nanotemplates

  4. Local and integral characterization local: Scanning Tunneling Microscopy integral: X-ray magnetic dichroism magneto-optical Kerr effect

  5. Fe on Pt: structural phases 8 atomic rows [111] 30 nm Pt(997): Lee, Kuhnke, Kern, Surf. Sci. 2006

  6. Fe impurities on Pt(111) H = 1T XMCD gives magnetic moments 0° mS = 1.85µB, mL = 0.28µB 70° while superparamagnetic fit yields MAE and spin block size N  3.5, MAE = 0.9 meV/atom 0.12 ML Fe 1 2 3

  7. Ab-initio modeling Minar Ebert Calculation of anisotropy energy via magnetic torque T(n) Simulation of magnetisation curves m(B,T,θ) based on ab-initio results Correlation of anisotropy energy with anisotropy of orbital moment Ensemble of Fen-clusters on Pt(111) (n=1,2,3) at T=6K Eur. Phys. J. D 45, 529-534 (2007)

  8. Atomic wires at step edges P. Gambardella, et. al, Nature 416 (2002) 301

  9. Monowires on Pt(997) 0.1 ML Fe/Pt(997), dI/dV Magnetization at B = 1T Magnetization (a.u.) Co-measurements: P. Gambardella et al. Nature 416 (2002) 301 PRB 74, 054408 (2006)

  10. Substrate-controlled chain magnetism Komelj, Steiauf, Fähnle PRB 73, 134428 (2006) Co Fe only • strong influence of Pt on • MAE in Fe wire: • large MCA • SRT into film plane Pt only Fe SOC at Fe and Pt site easyaxis ca. 80deg with respect to surface normal!

  11. Fe-pt surface alloy Deposition of 0.5 ML Fe (a) and 0.25 ML Fe (b) on Pt(997) at 525 K Honolka, Enders, Kern, Fauth, Schuetz, Buchsbaum, Varga, Bornemann, Ebert, Skomski, PRL 2009.

  12. Large anisotropy and induced Pt moments alloy alloy stripe TXMCD = 10K magnetic field (T) increased XMCD at Fe L3 in Fe50Pt50 induced moments in Pt mtot = 2.4µB MAE = 0.42 meV/atom forcomparison: FePtclusterlayers, HC = 0.6 Tfor grain sizes of 4-5nm J.A.Christodoulides et al. Phys.Rev.B68 (2003) 054428; S.Sun et al. Science 287 (2000) 1989

  13. Magnetic anisotropy in 3d-5d binary alloys Mertig 1995, Ravindran 2001 [ DmL: calculated (Ederer, Fähnle, 2003) ] Fully relativistic ab-initio calculations on 2D alloy layers (H. Ebert): 2 x 1 alloy: strong FM coupling along wires (30meV/atom) weak FM coupling between wires (0.5 meV/atom) strong Dzyaloshinski-Moriya interaction (>1 meV) 2 x 2 alloy: 0.15 meV per Fe atom Disordered surface alloy ML: 0.09 meV per Fe atom Full Fe monolayer: 0.03 meV/ per atom, out of plane Key to large anisotropy: Fe bridging Fe chains at 0.5 - 0.6 ML coverage

  14. Cluster self-assembly on templates W(110): Carbon –induced 15 x 12 reconstruction Fe on C/W(110) Co on C/W(110) 9 nm

  15. Buffer layer assisted growth 30 K 30 K 100 K Key references: J.H. Weaver and G.D. Waddill, Science 251 (1991) 1444

  16. Control over Cluster size and magnetism 1.7 ML Fe MBE grown clusters of 2 ML Fe 3.9 ± 2.8nm 6.7 ± 4.2nm 9.9 ± 7.6nm 250L 30L 100L 100 x 100nm2 Eur. Phys. J. D 45, 515-520 (2007)

  17. Substrate-Controlled Cluster Magnetism 5K 5K 4.2K Co clusters (0.1 ML Co / 10 L Xe) M ... on Ag(111) ... on Pt(111) M M

  18. TowardsOrdered Cluster Layers 3.2 nm after 3 subsequent cluster fabrication cycles: 100  100 nm2 3 x 0.05 ML Co / 10 L Xe

  19. Metallo-organic structures TPP / Ag(111) TPP / Cu(111) H2TPP: meso-tetraphenyl porphyrin TCPP / Ag(111) TPP / Ag(111) N Co H2TCPP: meso-tetracarboxyphenyl porphyrin 0.5 nm Prepared at T = 300 K, STM at 77 K

  20. Future trends and perspectives 2020 multi-level hierarchic architectures adaptive programmed materials terra incognito 2015 quantum computation hybrid assemblies supramolecular technology quantum technology smart materials COMPLEXITY integrated nanosystems single electron (spin) technology 2010 advanced materials bio-inspired machines single-molecule sensing and devices photonics isolated nanostructures nanomedicine nanomagnetism in vivo nano-tools nanoelectronics bionanotechnology biomimetics molecular scale handling single electron & spin quantum coherence CONTROL

  21. Summary • Fe model structures on Pt: • Adatoms: out-of-plane M • Wires: in-plane M • Surface alloy: steps, DM interaction • 3d-5d hybridization determines anisotropy • Deposited compact clusters: • substrate-dependent anisotropy of Co on Pt(111), Ag(111) • Suppressed moments in Rh upon contact with Ag(111) • Cluster ordering with nanotemplates (BN nanomesh)

  22. Synchrotron radiation + UHV + STM + 0.3 K + 20 T !

More Related