680 likes | 788 Vues
Delve into theoretical perspectives on parity violation and strange quarks, covering historical context, radiative corrections, and future prospects in the modern era of nuclear physics. Learn about the internal landscape of nucleons, properties of nuclear matter, and the dynamics of quark interactions in hadronic matter.
E N D
Parity-Violation and Strange Quarks: Theoretical Perspectives M.J. Ramsey-Musolf Hall A Collaboration Meeting: December ‘05
Outline • Historical Context • Strange quarks: what have we learned? • Other aspects of parity-violation and QCD: radiative corr, N to D , gg
1970’s SLAC DIS Standard Model Atomic PV sin2qW ~ 10% Prehistory 1980’s Mainz 8Be PV eq couplings MIT 12C ~ 10% PV: Past, Present, & Future
Modern Era 1990’s MIT GsE,M ~ few % JLab GA & rad corrections Mainz rn(r) APV sin2qW ~ 1% Anapole moment 2000’s SLAC Moller Standard Model & beyond JLab QWeak sin2qW < 1% APV Anapole moment JLab GAND Mainz HWI (DS=0): dD , Ag VVCS: An PV: Past, Present, & Future
Future 2010’s JLab DIS-Parity Standard Model & beyond Moller (2) sin2qW < 1% 2020’s NLC Moller (3) sin2qW < 0.1% PV: Past, Present, & Future
qq Mesons • What is the internal landscape of the nucleon? • What does QCD predict for the properties of nuclear matter? • Where is the glue that binds quarks into strongly-interacting particles and what are its properties? How does QCD make hadronic matter? PV & strange quarks Hybrids 2.5 exotic nonets 2.0 Tribble Report GPD’s: “Wigner Distributions” (X. Ji) mq-dependence of nuclear properties 1.5 1.0 L = 0 1 2 3 4 Pentaquark, Q+ Gluonic effects Quarks, Gluons, & the Light Elements Lattice QCD
Effects in are much less pronounced than in , OZI violation Strange Quarks in the Nucleon:What have we learned? Jaffe ‘89 Hammer, Meissner, Drechsel ‘95 • Dispersion Relations • Narrow Resonances • High Q2 ansatz
Effects in are much less pronounced than in , Strange Quarks in the Nucleon:What have we learned? HAPPEX SAMPLE MAINZ G0 K. Aniol et al, nucl-ex/0506011
Theory: how do we understand dynamics of small ss effects in vector current channel ? Challenge to understand QCD at deep, detailed level Unknown constants Strange Quarks in the Nucleon: What have we learned? • Strange quarks don’t appear in the conventional Quark Model picture of the nucleon • Perturbation theory is limited QCD / ms ~ 1 No HQET mK / c ~ 1/2 PT ? • Symmetry is impotent Js = JB - 2 JEM, I=0
Strange magnetism O (p2) mq -independent What PT can (cannot) say Ito & R-M; Hemmert, Meissner, Kubis; Hammer, Zhu, Puglia, R-M The SU(3) chiral expansion for mB :
Strange magnetism What PT can (cannot) say Ito & R-M; Hemmert, Meissner, Kubis; Hammer, Zhu, Puglia, R-M The SU(3) chiral expansion for mB : O (p3) non-analytic in mq unique to loops leading SU(3)
Strange magnetism What PT can (cannot) say Ito & R-M; Hemmert, Meissner, Kubis; Hammer, Zhu, Puglia, R-M The SU(3) chiral expansion for mB : O (p4) non-analytic in mq (logs)
M = diag (0,0,1) Strange magnetism What PT can (cannot) say Ito & R-M; Hemmert, Meissner, Kubis; Hammer, Zhu, Puglia, R-M The SU(3) chiral expansion for mB : O (p4) SU(3) Sym breaking Two-deriv operators + 1/mN terms
Strange magnetism O (p2) O (p3) O (p4) What PT can (cannot) say Ito & R-M; Hemmert, Meissner, Kubis; Hammer, Zhu, Puglia, R-M The SU(3) chiral expansion for mB : • converges as (mK / Lc )n • good description of SU(3) SB
Strange magnetism What PT can (cannot) say Ito & R-M; Hemmert, Meissner, Kubis; Hammer, Zhu, Puglia, R-M O (p4) octet only Implications for ms : O (p3,p4) loop only O (p2) singlet O (p4) singlet O (p2,p4) octet • Near cancellation of O (p2,p4) octet & loop terms • Exp’t: b0 + 0.6 b8 terms slightly > 0 • Models: different assumptions for b0 + 0.6 b8 terms
Happex projected G0 projected SAMPLE 2003 Lattice QCD theory Dispersion theory Chiral perturbation theory “reasonable range” for slope Q2 -dependenceof GsM
Strange magnetism O (p4), unknown LEC O (p4), octet O (p3), parameter free O (p4) , cancellation What PT can (cannot) say
Strange magnetism O (p4), unknown LEC O (p3,p4), loops O (p4), octet What PT can (cannot) say
Strange electricity What PT can (cannot) say Ito & R-M; Hemmert, Meissner, Kubis; Hammer, Zhu, Puglia, R-M O (p3): non-analytic in mq (loops) + mq -independent cts The SU(3) chiral expansion for rs :
Strange electricity O (p3), unknown LEC O (p3), loops O (p3), octet What PT can (cannot) say Ito & R-M; Hemmert, Meissner, Kubis; Hammer, Zhu, Puglia, R-M The SU(3) chiral expansion for rs :
Loops “vs” poles • Dispersion Theory • Models Unknown constants • Lattice QCD No dichotomy: kaon cloud is resonant Js = JB - 2 JEM, I=0 Strange Quarks in the Nucleon: What have we learned? It’s all in the low energy constants
Dispersion Theory • Models Unknown constants • Lattice QCD Js = JB - 2 JEM, I=0 Strange Quarks in the Nucleon: What have we learned? It’s all in the low energy constants Kaon cloud Not sufficient to explain GsE,M
Dispersion Theory • Models Unknown constants • Lattice QCD Js = JB - 2 JEM, I=0 Strange Quarks in the Nucleon: What have we learned? It’s all in the low energy constants Kaon cloud models Not reliable guide to sign or magnitude of GsE,M
Dispersion Theory • Models Unknown constants • Lattice QCD Js = JB - 2 JEM, I=0 Strange Quarks in the Nucleon: What have we learned? It’s all in the low energy constants Chiral models Implicit assumptions about b0 , c0 , b0r , …
• Dispersion Theory • Models Unknown constants • Lattice QCD Js = JB - 2 JEM, I=0 Strange Quarks in the Nucleon: What have we learned? It’s all in the low energy constants Disconnected Insertions ~ +… Still a challenge
Strong interaction scattering amplitudes e+ e- K+ K-, etc. Contributing States Jaffe Hammer, Drechsel, R-M Dispersion theory
Strong interaction scattering amplitudes e+ e- K+ K-, etc. Jaffe Hammer, Drechsel, R-M Dispersion theory
Strong interaction scattering amplitudes e+ e- K+ K-, etc. Jaffe Hammer, Drechsel, R-M Dispersion theory
Unitarity All orders • Naïve pert th’y O (g2) • Kaon cloud models • Unitarity violating Dispersion theory Hammer & R-M
Unitarity • S-quarks are not inert • Non-perturbative effects dominate (LEC’s) • Kaon cloud is resonant All orders res Dispersion theory Hammer & R-M
Kaon cloud Dispersion theory Hammer & R-M • Kaon cloud not dominant • Not sufficient data to include other states
See also Leinweber et al Lattice Computations Dong, Liu, & Williams (1998) Lewis, Wilcox, Woloshyn (2003) • Quenched QCD • Wilson fermions • 100 gauge configurations • 300-noise estimate/config • Quenched QCD • Wilson fermions • 2000 gauge configurations • 60-noise estimate/config
Charge Sym mB exp’t Disconn s/d Lattice Computations Leinweber et al
Charge Symmetry s/d loop ratio mdloop:Lattice ms:kaon loops • Charge symmetry • Measured octet m.m.’s • Lattice mdloop • Kaon loops Leinweber et al Lattice Computations
• Dispersion Theory • Models Unknown constants • Lattice QCD Js = JB - 2 JEM, I=0 Strange Quarks in the Nucleon: What have we learned? It’s all in the low energy constants Disconnected Insertions ~ +… Still a challenge
dRA “Reasonable range”: lattice & disp rel Combining PT, dispersion theory, & lattice QCD SAMPLE
Dispersion Theory • Models Unknown constants • Lattice QCD Js = JB - 2 JEM, I=0 Strange Quarks in the Nucleon: What have we learned? It’s all in the low energy constants Chiral models Implicit assumptions about b0 , c0 , b0r , …
b0,8=0 • Dispersion Theory • Models Unknown constants • Lattice QCD Js = JB - 2 JEM, I=0 Strange Quarks in the Nucleon: What have we learned? It’s all in the low energy constants Jido & Weise No Implicit assumptions about b0 , c0 , b0r , …
ms > 0 • Dispersion Theory • Models Unknown constants • Lattice QCD Js = JB - 2 JEM, I=0 Strange Quarks in the Nucleon: What have we learned? It’s all in the low energy constants Jido & Weise Implicit assumptions about b0 , c0 , b0r , …
~ s in g.s. s in excited state (p wave) • Dispersion Theory • Models Unknown constants • Lattice QCD Js = JB - 2 JEM, I=0 Strange Quarks in the Nucleon: What have we learned? It’s all in the low energy constants Zou & Riska (QM) Give wrong sign ??? Implicit assumptions about b0 , c0 , b0r , …
ms > 0 ~ s in g.s., (s wave) s in excited state • Dispersion Theory • Models Unknown constants • Lattice QCD Js = JB - 2 JEM, I=0 Strange Quarks in the Nucleon: What have we learned? It’s all in the low energy constants Zou & Riska (QM) Give right sign ??? Implicit assumptions about b0 , c0 , b0r , …
ms < 0 • Dispersion Theory • Models Unknown constants • Lattice QCD Js = JB - 2 JEM, I=0 Strange Quarks in the Nucleon: What have we learned? It’s all in the low energy constants Zou & Riska (QM) t-channel resonances? Implicit assumptions about b0 , c0 , b0r , …
ms > 0 • Dispersion Theory • Models Unknown constants • Lattice QCD Js = JB - 2 JEM, I=0 Strange Quarks in the Nucleon: What have we learned? It’s all in the low energy constants Chiral Quark Soliton Implicit kaon cloud + b3-7… resonances ? Implicit assumptions about b0 , c0 , b0r , …
ms < 0 • Dispersion Theory • Models Unknown constants • Lattice QCD Js = JB - 2 JEM, I=0 Strange Quarks in the Nucleon: What have we learned? It’s all in the low energy constants Chiral Quark Soliton Implicit kaon cloud + b3-7… resonances ? Implicit assumptions about b0 , c0 , b0r , …
Unknown constants Js = JB - 2 JEM, I=0 Strange Quarks in the Nucleon: What have we learned? New puzzles: higher Q2-dependence
Radiative Corrections & the Hadronic Weak Interaction • GAe • N !D • PV p photo- and electro-production (threshold) • Vector analyzing power (gg)
Models for s Radiative corrections at Q2=0.1 (GeV/c)2 • s-quarks contribute less than 5% (1s) to the proton’s magnetic form factor. • proton’s axial structure is complicated! R. Hasty et al., Science 290, 2117 (2000).
“Anapole” effects : Hadronic Weak Interaction + Nucleon Green’s Fn : Analogous effects in neutron -decay, PC electron scattering… Axial Radiative Corrections
Zhu et al. Zhu, Puglia, Holstein, R-M (cPT) Maekawa & van Kolck (cPT) Riska (Model) “Anapole” Effects Hadronic PV Can’t account for a large reduction in GeA
Suppressed by ~ 1000 Nuclear PV Effects PV NN interaction Carlson, Paris, Schiavilla Liu, Prezeau, Ramsey-Musolf