1 / 38

JRG Nanoparticles

JRG Nanoparticles. Laser Generated Pure Nanoparticulate Reference Material for Risk Assessment Studies S. Barcikowski, J. Jakobi, A. Hahn, J. Walter, S. Petersen NanoMed 2009, March 6th, Berlin. "Healthy" organic nanoparticles … …from Hannover brewery.

lacy
Télécharger la présentation

JRG Nanoparticles

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. JRG Nanoparticles Laser GeneratedPure Nanoparticulate Reference Materialfor Risk Assessment StudiesS. Barcikowski, J. Jakobi, A. Hahn, J. Walter, S. PetersenNanoMed 2009, March 6th, Berlin

  2. "Healthy" organic nanoparticles… …from Hannover brewery

  3. Example of a Risk Assessment Approach: Airborne Nanoparticles in the Human Respiratory Tract Inhalation Human Respiratory Tract Animal Model Aerosol Colloid In vitro Instillation

  4. Biological response is correlated to nanoparticle SURFACE ZrO2: Y Ref.: Stoeger et al.,GSF Annul. Rep. (2004) 43-48

  5. "Gold Colloid" (Material Data Sheet) NaN3

  6. Uptake Mediated by Cell Penetrating Peptides Transferrin Ligand: not toxic but prolongsnanoparticle penetration into cytoplasma Transferrin-Mediated Cellular Uptake by Endocytosis. 5-h treatment, green labeling, exc. 488 nm, emiss. 515 nm(A) Control cells (human nasopharyngeal carcinoma cells)(B) cells treated with Au nanoparticles(C) cells incubated with Au-Transferrin nanoparticles;(D) cells treated with Au-albumin nanoparticles; (E and F) cells co-treated with different proportions of Au-TF versus holo-TF (1:2 and 1:5, respectively). Yang et al., Transferrin-Mediated Gold Nanoparticle Cellular Uptake. Bioconjugate Chem., Vol. 16, No. 3, 2005 495

  7. Requirements to Nanoparticulate Reference Material for Risk Assessment Studies • Same material composition of aerosol and colloid - aerosol: inhalation (in vivo) - colloid: instillation (in vivo / in vitro) • High purity  minimized cross effects 3. Size control

  8. Nanoparticle Generation Processes Mechanical Synthesis Form-in-Place Ball Mills, Planet Mills Kryo-Milling Homogenisation (organics) Lithography Chemical Vapour Deposition Physical Vapour Deposition Gas Phase Synthesis Wet Chemistry Flame Hydrolysis Flame Pyrolysis Cemical Vapour Synthesis CO2 Laser Pyrolysis Sol-Gel-Process Precipitation of Salts

  9. Sol-Gel / Precipitation - scalability, monodisperse colloids - chemical precursors and additives Gas phase Synthesis • multi-ton scale, gaseous precursors • powders / agglomerates Aggregation Precursor Nucleation Start Gas Phase Synthesis / Wet Chemistry Ref.: Fonds der Chem. Industrie, Nanobox (2006)

  10. Nanoparticle Generation Processes Mechanical Synthesis Form-in-Place Ball Mills, Planet Mills Kryo-Milling Homogenisation (organics) Lithography Chemical Vapour Deposition Physical Vapour Deposition Gas Phase Synthesis Wet Chemistry Flame Hydrolysis Flame Pyrolysis Cemical Vapour Synthesis CO2 Laser Pyrolysis Sol-Gel-Process Precipitation of Salts Limitations in Risk Assessment Studies Availability of precursors  Limited Nanomaterials Agglomeration (powder)  Re-Dispersion Additives and chemicals Purification

  11. Start Laser generated Aerosols

  12. CCD Beam Splitter Strahlteiler Laser Lens Sample Linse P V ELPI Chamber SampleHolder Kammer P Continuous Generation of Nanoparticles in Gasesby Laser Ablation from Solid Targets Process Chamber Experimental Setup Sample Exit Window Sample Holder Inlet continuous ablation of any solid target material(e.g. titanium, silver, alloys, …) no chemical precursors

  13. Particle Size Distribution During fs-Laser Ablation of Graphite Pulse Energy: 50 µJ 100% Pulse Energy: 300 µJ 80% 60% Number Frequency 40% 20% 0% 0.007 0.03 0.06 0.16 0.25 0.39 0.63 0.98 1.59 2.43 3.93 0.1 Aerodyn. Diameter [µm] S. Barcikowski,et al., ICALEO 2005

  14. Influence of the Process Gas on the Particle Size during fs-laser ablation of Titanium 3.93 µm 100% 2.43 µm 1.59 µm 80% 0.98 µm Micron and Submicron 0.63 µm 60% 0.39 µm 0.25 µm 40% 0.16 µm 0.10 µm 20% 0.06 µm Nano 0.03 µm 0% 0.007 µm Press. Air Helium Nitrogen S. Barcikowski, A. Hahn, B. Chichkov. J. Laser Appl., Vol. 19, No. 2, May 2007

  15. Particle size distribution during laser ablation of zirconia using different types of laser S. Barcikowski, A. Hahn, B. Chichkov, J. Laser Appl., Vol. 19, No.2, pp. 65-73 (2007))

  16. Composition of the nanoparticulate matter Y2O3-doped ZrO2 Zr O Y Zr Y Laboratory of Biomaterials Dept. of Neurosciences, University of Modena and Reggio Emilia, Italy S. Barcikowski, J. Walter, A. Hahn, J. Koch, H. Haloui, T. Herrmann, A. Gatti. Proc. LPM 2008. Subm. to Journal of Laser Micro/Nanoengineering (2009)

  17. Composition of the nanoparticles:Energy Electron Loss Spectroscopy ZrO2: Y Laboratory of Biomaterials Dept. of Neurosciences, University of Modena and Reggio Emilia, Italy S. Barcikowski, J. Walter, A. Hahn, J. Koch, H. Haloui, T. Herrmann, A. Gatti. Proc. LPM 2008. Subm. to Journal of Laser Micro/Nanoengineering (2009)

  18. Composition of the nanoparticulate matter sampled at the workplace FeCrNi alloy (stainless steel) Fe Cr Ni Laboratory of Biomaterials Dept. of Neurosciences, University of Modena and Reggio Emilia, Italy S. Barcikowski, J. Walter, A. Hahn, J. Koch, H. Haloui, T. Herrmann, A. Gatti. Proc. LPM 2008. Subm. to Journal of Laser Micro/Nanoengineering (2009)

  19. Start Laser generated Colloids

  20. Laser Ablation in Liquids  100% pure • fully dispersed and stable  safe • unlimited materials and liquids

  21. Laser Generated Colloidal Nanoparticles Platinum Copper Silver Gold Conjugates NiFe Iron Oxide

  22. Limitations in fabricating Colloidal nanoparticle alloy from Sm2Co17 Problem: Disproportionation! Enrichment of • Co in small • Sm in big Nanoparticles. Possible reason: Difference (130%) Heat of Evap. • Co: 377 kJ/mol • Sm: 166 kJ/mol cause segregation in fast (Sm) and slow (Co) component in laser plume.

  23. PtIr Alloy Nanoparticle Colloid Pt-Ir Alloy Similar (18%) Heat of Evap. - Pt: 510 kJ/mol - Ir: 604 kJ/mol

  24. 50µm 500nm 50µm Electro-Deposition at Neural Electrodes / Implant Surface PtIr NiTi Menendez et al, JLMN 2009 // Barcikowski et al.,Biomaterialien 2007

  25. Human adipose-tissue derived mesenchymalstem cells grown on NiTi-Nanoparticles (FE-ESEM at 99.7% humidity) Barcikowski, Hahn, Guggenheim, Reimers, Vogt; unveröffentlicht

  26. Start Stabilisation

  27. Ex-situ Stablisation with Albumin Albumin ist contained in... • Blood, Human Serum • Cell culture media (DMEM, RPMI) Stability in 0.07 M KCl Albumin No Albumin V. Amendola, M. Meneghetti. J. Mater. Chem., 2007, 17, 4705–4710

  28. Motion and kinetics of laser-generated Nanoparticles Set-Up Nanoparticle Motion Gold Electrodes Laser Scattering Kinetics U=0 V Brownian Motion

  29. Motion and kinetics of laser-generated Nanoparticles Set-Up Nanoparticle Motion Gold Electrodes (-) (+) Laser Scattering Kinetics Vector field of electro-mobility at U=20 V

  30. Au S S S S S S S S S SH NH2 COOH In-situ Functionalisation fs laser beam variable ligand variable target (e.g. Au)

  31. In-situ conjugation with citrate or cysteine 10 Cysteine 0 Citrate -10 -20 Zeta Potential [mV] -30 -40 -50 -60 0.01 0.1 1 10 100 Concentration [mmol/l] Laser generated NiTi-alloy Nanoparticles

  32. Stability in Saline Solutions physiological salinity Stability of conjugates is evidenced in saline solutions

  33. Stability in Saline Solutions or Buffers S. Petersen, S. Barcikowski, Advanced Funct. Materials, in press (2009)

  34. 10 nm Laser generated Nano-Bio-Conjugates are monodisperse Size distribution TEM Micrographs TEM DLS AUZ Frequency 200 nm Nano-Bioconjugates 0 25 50 0 50 100 10 100 Diameter 200 nm Gold Nanoparticles S. Petersen, S. Barcikowski, Advanced Funct. Materials, in press (2009)

  35. Conclusion Nanoparticle reference material: - purity, - size,- composition matters! Laser ablation in gases and liquids: Contribution to systematic studies on adverse health effectsof engineered nanoparticles?

  36. Acknowledgement Funding: European Commission: integrated project LAUNCH-MICRO (NMP2-CT-2005-011795) German Research Foundation (DFG): Junior Research Group 'Nanoparticles' within Excellence Cluster REBIRTH Contributions at LZH-Nanomaterials Group: Niko Bärsch Anne HahnJurij Jakobi Ana Menendez Christin Menneking Svea Petersen Laszlo Sajti Ramin Sattari Andreas Schwenke Philipp Wagener Johanna Walter Jürgen Walter Contribution from Univ. Bologna: Antionetta Gatti

  37. Thank you ! Acknowledgement Contributions at LZH-Nanomaterials Group: Stephan Barcikowski Niko Bärsch Anne HahnJurij Jakobi Ana Menendez Christin Menneking Svea Petersen Laszlo Sajti Ramin Sattari Andreas Schwenke Philipp Wagener Johanna Walter Jürgen Walter Contribution from Univ. Bologna: Antionetta Gatti

  38. Laser fragmentation of gold nanoparticles in water Absorption [-] Wavelenghth [nm] 2 min 1 min 30 s Duraion of Irradiatin 0 s

More Related