• 170 likes • 741 Vues
Exercise 2 Improved Gray Scale (IGS) Code . 授課老師:葉家宏 教授 學生:黃宇清 M023010097 . 2013/11/27. Outline. Processing How to Error correction and recover bit Design LSB myself Result Conclusion. Processing. 8bits Gray. 4 bits IGS. 4 bits LSB. Transmission error. zero random myself.
E N D
Exercise 2 Improved Gray Scale (IGS) Code 授課老師:葉家宏 教授 學生:黃宇清 M023010097 2013/11/27
Outline • Processing • How to Error correction and recover bit • Design LSB myself • Result • Conclusion
Processing 8bits Gray 4bits IGS 4bits LSB Transmission error zero random myself Error correction 8bits Gray
Error correction and recover bit • Use Hamming code(7,4) • Only Can correction and recover 1 bit
Design LSB myself If (Hamming Check = 0) 代表 no error Else Hamming Check = Hamming Check
LSB by 0 Bit error rate 1% PSNR = 24.05073 PSNR = 30.597349
LSB by 0 Bit error rate 5% PSNR = 17.74497 PSNR = 22.441748
LSB by 0 Bit error rate 10% PSNR = 14.956041 PSNR = 17.449496
LSB by 0 Bit error rate 15% PSNR = 13.388941 PSNR = 14.744982
LSB by myself Bit error rate 1% PSNR = 23.986222 PSNR = 30.210068
LSB by myself Bit error rate 5% PSNR = 17.695147 PSNR = 22.228934
LSB by myself Bit error rate 10% PSNR = 14.921337 PSNR = 17.364861
LSB by myself Bit error rate 15% PSNR = 13.371626 PSNR = 14.710633
Conclusion • 根據PSNR分析數據圖,可以發現當bit error rate超過10%時,使用Hamming code,更錯的能力明顯下降許多。 • 自行設計的LSB方法,比LSB by 0的PSNR值差,但比LSB by Random優。 • 要設計比LSB by 0好,似乎件不容易。