1 / 118

Exploring Carcinogen Risk Analysis Through Benzene

Exploring Carcinogen Risk Analysis Through Benzene. Image from Matthew J. Dowd Department of Medicinal Chemistry Virginia Commonwealth University. Objective. Use benzene as a case for exploring Toxicology Epidemiology Uncertainty Regulatory Science. Toolbox Building.

lotus
Télécharger la présentation

Exploring Carcinogen Risk Analysis Through Benzene

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Exploring Carcinogen Risk Analysis Through Benzene Image from Matthew J. Dowd Department of Medicinal Chemistry Virginia Commonwealth University  2002 David M. Hassenzahl

  2. Objective • Use benzene as a case for exploring • Toxicology • Epidemiology • Uncertainty • Regulatory Science  2002 David M. Hassenzahl

  3. Toolbox Building • Likelihood Maximization • Curve fitting • Bootstrapping • Z-Scores • Relative Risk • Dose-Response extrapolation  2002 David M. Hassenzahl

  4. Overview of benzene • Fairly common hydrocarbon • Manufacturing • Petroleum products • Strongly suspected human carcinogen • Animal assays • Many epidemiological studies • Leukemia as important endpoint  2002 David M. Hassenzahl

  5. Benzene structure Image from Matthew J. Dowd Department of Medicinal Chemistry Virginia Commonwealth University  2002 David M. Hassenzahl

  6. Benzene Data in Should We Risk It? • Toxicological Data, p. 175 et seq. • Epidemiological Data p 211 – 216 • But many other data sets • Other toxicological data (rare) • Chinese workers • Turkish workers  2002 David M. Hassenzahl

  7. Toxicology Data Set  2002 David M. Hassenzahl Crump and Allen 1984

  8. What are risks from benzene? • Risk as potency times exposure • How do we determine potency? • Extrapolate from animal data? • Extrapolate from epidemiological data? • How wrong will we be? • What are “real” exposures? • What are effects at these levels?  2002 David M. Hassenzahl

  9. Toxicology • Paracelsus “the dose makes the poison” • Regulatory assumptions! • This is not Dr. Gerstenberger’s Toxicology!  2002 David M. Hassenzahl

  10. Reading • SWRI Chapter 5 • US EPA Proposed guidelines (US EPA 1996) • Cox 1996  2002 David M. Hassenzahl

  11. General idea • Applied doses • Greater specificity about exposure than epidemiology • Observed effects • Artificial control of exposure  2002 David M. Hassenzahl

  12. Physiologically Based Pharmacokinetics • PBPK • Investigate flows of materials through bodies • System dynamics models • More on these in exposure lecture  2002 David M. Hassenzahl

  13. Studies • Animals • Rarely humans • Parts • Cell • tissue  2002 David M. Hassenzahl

  14. Effects • Chronic • cancer fatality • increasing interest in other issues • lead and intelligence in children. • Acute • Reversible • Irreversible  2002 David M. Hassenzahl

  15. Crump and Allen Benzene data set • Animals at various concentrations • Four data points • “Designer” mice  2002 David M. Hassenzahl

  16. Relevance to Humans • How to get from • high level, lifetime studies of animals to • anticipated low dose effects in humans?  2002 David M. Hassenzahl

  17. Questions about benzene • Is benzene a mouse carcinogen? • Is benzene a human carcinogen? • If so, how potent?  2002 David M. Hassenzahl

  18. Benzene data set I Crump and Allen data set (Crump and Allen 1984) Note: the actual doses are not stated correctly here. See “notes for more information  2002 David M. Hassenzahl

  19. Benzene data set II 1.0 0.8 0.6 P(cancer) 0.4 0.2 0 0 25 50 75 100 Dose (mg/kg/day) Crump and Allen data set.  2002 David M. Hassenzahl

  20. Uncertainty Pervades • Often understated • Creates (or at least prolongs) conflict • Think as we go! (Part of Homework PS 2)  2002 David M. Hassenzahl

  21. Animal Test Issues • Interspecific comparison • Statistical uncertainty • Heterogeneity • Extrapolation • Dose Metric  2002 David M. Hassenzahl

  22. Interspecific comparison • Mouse-human • Metabolism as a function of body weight • Dosehuman = sf  Dosemouse • sf = (BWhuman/BWmouse)1-b • b is empirically derived as 0.75a a. See SWRI page 177.  2002 David M. Hassenzahl

  23. Interspecific comparison • Lifetime of human = lifetime mouse? • Mice age 30 days per human day • Total mouse lifetime is much shorter • Analogous organs or processes? • Do mice have cancer points we do not? • Do we have cancer points mice do not? a. See SWRI page 177.  2002 David M. Hassenzahl

  24. Interspecific comparison 1. Hallenbeck, 1993 2. Finley et al., 1994  2002 David M. Hassenzahl

  25. Interspecific comparison sf = (BWhuman/BWmouse)1-b sf = (70/0.03)0.25 = 7.0 Dosehuman = 7.0  Dosemouse  2002 David M. Hassenzahl

  26. Interspecific comparison Crump and Allen data set, converted to humans  2002 David M. Hassenzahl

  27. Animal Test Issues • Interspecies comparison • Statistical uncertainty • Heterogeneity • Extrapolation • Dose Metric  2002 David M. Hassenzahl

  28. Binomial Distribution • 50 genetically “identical” mice…binomial distribution? • Can use this to generate “likelihood function” to compare the likelihood that any given probability is  2002 David M. Hassenzahl

  29. Likelihood Maximization • More appropriate than Least Squares when you know something about likelihoods • “Bootstrapping” method needed • We will work through likelihood maximization  2002 David M. Hassenzahl

  30. Statistical Uncertainty Can calculate standard deviation using the binomial Recall that two standard deviations to either side represents a 95% confidence interval, and...  2002 David M. Hassenzahl

  31. Statistical Uncertainty 1.0 0.8 0.6 P(cancer) 0.4 0.2 0 0 175 350 525 700 Human Dose (mg/kg/day) Crump and Allen data set, applied to humans  2002 David M. Hassenzahl

  32. Animal Test Issues • Interspecies comparison • Statistical uncertainty • Heterogeneity • Extrapolation • Dose Metric  2002 David M. Hassenzahl

  33. Heterogeneity • Epidemiology and toxicology • Genetically identical mice compared to diverse humans • Predictable versus unpredictable susceptibility • Male and female differences (observed cancer rates are different)  2002 David M. Hassenzahl

  34. Heterogeneity • Genetic diversity among humans • Early insights into cancer mechanism: subpopulation born with one of two “steps” competed • Variability as a function of age  2002 David M. Hassenzahl

  35. Animal Test Issues • Interspecies comparison • Statistical uncertainty • Heterogeneity • Extrapolation • Dose Metric  2002 David M. Hassenzahl

  36. Extrapolation • Theoretical or “Mechanistic” models: • one-hit • two-hit • two-stage • Empirical • Cox “data-driven, model free curve fitting” • EPA Proposed Guidelines  2002 David M. Hassenzahl

  37. Overestimation Tautological effects Thresholds Hormesis, or “Vitamin” effect Underestimation Saturation Synergistic effects Susceptibility Omission Extrapolation Concerns  2002 David M. Hassenzahl

  38.  2002 David M. Hassenzahl

  39. After EPA (1996)  2002 David M. Hassenzahl

  40. Statistical Uncertainty 1.0 0.8 0.6 P(cancer) 0.4 0.2 0 0 175 350 525 700 Human Dose (mg/kg/day) Crump and Allen data set, applied to humans  2002 David M. Hassenzahl

  41. 1.0 LED(10) = 100 mgb/kg/day 0.8 0.6 P(cancer) 0.4 0.2 0 0 175 350 525 700 Human Dose (mg/kg/day)  2002 David M. Hassenzahl

  42. Extrapolation If LED(10) = 100 mg/kg/day, then LED(10-6) = 100  10-6 / 0.1 = 1  10-4 mg/kg/day  2002 David M. Hassenzahl

  43. Animal Test Issues • Interspecies comparison • Statistical uncertainty • Heterogeneity • Extrapolation • Dose Metric  2002 David M. Hassenzahl

  44. Dose Metric • Assumption: exposure is irrelevant to effect • Area under the curve/expected value. • Lifetime dose leads to average daily dose. • Particularly problematic if there are threshold effects or extreme effects  2002 David M. Hassenzahl

  45. Risk to Humans? • Lifetime cancer risk • 40 hours per week • 50 weeks per year • 30 years • Average 10 ppm(v) exposure?  2002 David M. Hassenzahl

  46. Calculate Risk • 10ml benzene/liter air • 0.313 ml/mg • 20m3 air / day • 1000 liters/ m3 • 70kg person  2002 David M. Hassenzahl

  47. Cancer Risk • Lifetime Cancer Probability is a function of Dose and Potency • Assume cumulative dose • Use Daily Dose per kg body weight, averaged over lifetime • Potency usually given as q* • Additional risk per unit dose  2002 David M. Hassenzahl

  48. Cancer Risk: Exposure Term  2002 David M. Hassenzahl

  49. Computed Exposure Terms  2002 David M. Hassenzahl

  50. Computed Exposure Terms  2002 David M. Hassenzahl

More Related