1 / 15

Enhanced GPS Strain Transient Detection Using Filter-Window Eigenvalue Method

This paper presents an advanced approach to detect transient deformations in GPS data through a Filter-Window Eigenvalue Method. The initial eigenvalue-only method encountered difficulties, particularly with noise attenuation from residual and high-frequency variance. An improved technique incorporating windowing enhances the detection threshold for episodic deformation. By employing an eigenvalue criterion and focusing on spatial and temporal deformation patterns, we provide a robust framework to accurately identify transient strain events. This research aims to effectively filter noise and maximize the eigenvalue ratio for improved transient analysis.

lucky
Télécharger la présentation

Enhanced GPS Strain Transient Detection Using Filter-Window Eigenvalue Method

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. GPS Strain Transient Detection with a Filter-Window-Eigenvalue Method • Initial approach • Eigenvalue-only method • Difficulties • Improved approach • Noise attenuation • Eigenvalue criterion • Windowing • Detection threshold Brad Lipovsky (UC Riverside, now at Stanford University) Gareth Funning (UC Riverside)

  2. Eigenvalue-only approach D(x,t) Data matrix with column vector time series X(x) Spatial patterns of deformation (collections of vectors) T(t) Temporal patterns of deformation (a collection of time series) λ Relative weighting of patterns (eigenvalues)

  3. Filter-Window-Eigenvalue Method Noise attenuation Eigenvalue Criterion Windowing

  4. Noise attenuation (1/3) Two observed types of GPS noise: • Residual, seasonally-correlated noise [e.g. Langbein 2008, Lipovsky 2011] • High-frequency “chatter” • Band-stop filter (2-pole IIR) • Band stops at 0.5 and 2.0 cycles/year • Low-pass filter (FIR) • Time constant ~50-125 days

  5. Eigenvalue Criterion (2/3) This criterion implies that episodes of transient deformation show a characteristic type of simplicity (space-time separability). ~ 1 Method: use this criterion as an indicator of transient deformation

  6. Windowing (3/3) Goal: Find subsets of the data that maximize λ1/λ2 The latitude-longitude window and time period of transient deformation, we define to be a transient centroid.

  7. Dataset 3f

  8. Dataset 3g

  9. Relationship with Least Squares

More Related