250 likes | 361 Vues
Dr. Hannah Jang-Condell explores the phenomenon of gap opening in protoplanetary disks due to planet formation, focusing on the TW Hya system. This research leverages observations from Hubble Space Telescope (HST) and other instruments to analyze gaps' characteristics and their implications for planet mass and formation epochs. The study utilizes thermal emission models and examines the impact of scattering light at various wavelengths, providing crucial insights into the dynamics within these young, gas-dominated disks and the conditions for giant planet formation.
E N D
Observing Gap OpeningBy Planets Dr. Hannah Jang-Condell Michelson Fellow University of Maryland NASA’s Goddard Space Flight Center Jang-Condell
Protoplanetary Disks TW Hya • T Tauri (F,G,K stars) or HerbigAe/Be (A,B stars) • Young (~1 Myr) • Optically thick • Gas-dominated • Era of Giant Planet formation AB Aur Debes, et al. in prep HST/STIS Fukagawa, et al. 2004 Jang-Condell
Probing the Epoch of Formation Protoplanetary disk Jang-Condell
Calculating Observables To observer =2/3 Flared disk Jang-Condell
Scattered Light F* FincF*/r2 i =2/3 Thermally reprocessed: Td 3D RT model Jang-Condell 2009 Jang-Condell
Thermal Emission dI/dl = B(Td) exp(-) =2/3 Thermally reprocessed Jang-Condell 2009 Jang-Condell
Simulated Images Shorter wavelengths, higher opacities, probe surface layers Longer wavelengths, lower opacities, probe deeper Flared disk Jang-Condell
Gap Opening by Planets • Bate et al., 2003 • Gap-opening threshold: rHill= (Mcrit/3M*)1/3a = H • Mcrit = 0.38 MJ 1 MJ 0.3 MJ 0.1 MJ 10 ME Jang-Condell
Gap Profiles 0.08 Mcrit 0.27 Mcrit 0.8 Mcrit 2.7 Mcrit Bate et al., 2003 Jang-Condell
Shadow Feedback Aristarchus crater, the Moon Credit: NASA (Apollo 15) Jang-Condell
1/3 Jupiter Mass at 10 AU Jang-Condell
No planet 37 MEarth 110 MEarth Gap At 10 AU 1 μm 30 μm 100 um Jang-Condell Jang-Condell,submitted
Inclination dimmer brighter Jang-Condell
No planet 37 MEarth 110 MEarth 45° Incl. 1 μm 30 μm 100 um Jang-Condell Jang-Condell, submitted
LkCa 15 (Espaillat, et al. 2008) H-band scattered light Thalmann et al., 2010 < 6 MJ (Mulders, et al. 2010) Jang-Condell
LkCa 15 models Jang-Condell, submitted Jang-Condell
Lower mass limit: 1.5 MJ Jang-Condell
LkCa 15 Radio Images Piétu, et al. 2006 (IRAM) 2.8 mm 1.4 mm 0.5 MJ 1.3 mm 1.5 MJ Isella, et al. (CARMA) Jang-Condell, submitted Jang-Condell
LkCa 15 model SED Bigger gaps appear brighter Jang-Condell
TW Hya • 56 AU • Hubble observations • STIS • NICMOS • 7 wavelengths • Debes, Jang-Condell, et al. (in prep) Jang-Condell
Multi-wavelength Fit Fit parameters: • Gap depth • 30%, 50% • Gap width • 10, 20, 30 AU • Grain size • amin 0.005, 0.5, 5 um • Disk truncation • 60, 80, 100 AU • Gap depth 30% Debes, Jang-Condell, et al., in prep Jang-Condell
rHill~H Partial Gaps 1 MJ 0.3 MJ • Gap-opening threshold: • rHill =(Mp/3M*)1/3a = H • for TW Hya, @ 80 AU: Mcrit = 0.9 MJup • 30% gap: ~0.3 MJup = Saturn mass 50% gap 0.1 MJ 10 ME 3 ME 1 ME Bate, et al. 2003 Jang-Condell
TW HyaGap vs. Gapless Gap is apparent in the brightness profile from optical to far-IR wavelengths Thi et al. 2010 PACS observations of TW Hya “No extended emission has been found.” Jang-Condell
Summary • Self-shadowing in gaps enhances the gap depth • Gaps are detectable in resolved disk images • May be detectable in SEDs also • Can infer planet masses from the observed gaps sizes Jang-Condell
7 degrees inclination Isotropic scattering Jang-Condell