1 / 45

Spatio – Temporal Cluster Detection Using AMOEBA

Spatio – Temporal Cluster Detection Using AMOEBA. Jimmy Kroon Pennsylvania State University Advisor: Dr. Frank Hardisty. This is a parody – Original Art: http://projectswordtoys.blogspot.com/2009/05/project-sword-annual-1967.html. Outline. Introduction – Clustering and Project Direction

medea
Télécharger la présentation

Spatio – Temporal Cluster Detection Using AMOEBA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Spatio – Temporal Cluster DetectionUsing AMOEBA Jimmy Kroon Pennsylvania State University Advisor: Dr. Frank Hardisty

  2. This is a parody – Original Art: http://projectswordtoys.blogspot.com/2009/05/project-sword-annual-1967.html

  3. Outline • Introduction – Clustering and Project Direction • The Spatial Scan Statistic and SatScan • AMOEBA • Proposed Spatio-Temporal AMOEBA Method • Software, Data, and Progress

  4. Cluster Detection Cluster: “a geographically and/or temporally bounded group of occurrences of sufficient size and concentration to be unlikely to have occurred by chance” (Knox, 1989) Two Typical Uses Disease Surveillance Week of 2/7/2010 Data: Google Flu Trends – Analysis: GeoDa Epidemiological Studies Brain Cancer in NM Kulldorff et al. 1998 Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  5. Time in Spatial Analysis • Time Matters: • Many geographic phenomena are dynamic. • Spatial patterns we see probably change over time • The American Association of Geographers describes temporal geography as a ‘frontier’ of GIScience. • Spatio-temporal clusters may exhibit behaviors not seen in purely spatial clusters. • Growth • Movement • Splits / Joins Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  6. Research Problem Primary: No method exists for the determining the true extent of irregularly shaped clusters in spatio-temporal datasets. Secondary: Spatial AMOEBA has not been implemented in R Project Goals • A demonstration of spatio-temporal cluster detection based on the AMOEBA procedure. • R scripts for running spatial and spatio-temporal AMOEBA will be contributed to the R community. Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  7. The Spatial Scan Statistic • Scan data with a moving ‘window’, calculating local autocorrelation for spatial units that fall within the window. • Select the window(s) with the highest calculated autocorrelation value as possible cluster(s). • The spatial scan statistic is by far the most popular cluster detection technique, largely due to the availability of SaTScan software by Martin Kulldorff. Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  8. The Spatial Scan Statistic Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  9. Drawbacks of the Spatial Scan Statistic • Clusters that are not similar in shape to the scanning window can produce errors. • False inclusions • False exclusions • Identify thin clusters as multiple small clusters • Cannot detect holes in clusters Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  10. The Elliptical Spatial Scan Statistic • Must choose shapes a priori to avoid pre-selection bias See Kulldorff et al. 2006 Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  11. AMOEBA • Ecotope-Based – Regions of contiguous spatial units that are related in terms of z-value • Multidirectional – Search in all directions. • Optimum – Procedure takes place at the finest spatial scale possible and is capable of revealing all spatial association present in the dataset (Aldstadt and Getis, 2006). AMOEBA Clusters Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  12. AMOEBA • Defining an Ecotope • Add a seed location (one polygon) to the ecotope • Calculate Gi* (Getis-Ord local autocorrelation statistic) • Search in all directions for contiguous polygons • Those that increase Gi* are added to the growing ecotope for that seed location • Keep searching for more neighbors, growing the ecotope until Gi* no longer increases • Repeat – creating ecotopes for each polygon in the dataset Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  13. The R Neighbor Object Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  14. Finding an Ecotope with AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  15. Finding an Ecotope with AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  16. Finding an Ecotope with AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  17. Finding an Ecotope with AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  18. Finding an Ecotope with AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  19. Finding an Ecotope with AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  20. Finding an Ecotope with AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  21. Finding an Ecotope with AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  22. Finding an Ecotope with AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  23. AMOEBA • From Ecotopes to Clusters • Rank ecotopes by final Gi* • Select that with the highest Gi* as a cluster • Eliminate intersecting ecotopes • Select the ecotope with the next highest Gi* as a second cluster • Repeat • Probability of clusters can be tested using Monte Carlo simulation Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  24. Incorporating Time into AMOEBA • Remember - Spatio-temporal clusters may exhibit behaviors not seen in purely spatial clusters. • Growth • Movement • Splits / Joins • Visualize temporal data as layers of data with time extending vertically through the layers. • Each spatio-temporal unit has spatial neighbors and temporal neighbors Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  25. The Spatio-Temporal Scan Statistic See Kulldorff et al. 1998 Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  26. Spatio-Temporal AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  27. Spatio-Temporal AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  28. Spatio-Temporal AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  29. Spatio-Temporal AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  30. Spatio-Temporal AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  31. Spatio-Temporal AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  32. Spatio-Temporal AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  33. Spatio-Temporal AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  34. Spatio-Temporal AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  35. Spatio-Temporal AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  36. Spatio-Temporal AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  37. Spatio-Temporal AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  38. Spatio-Temporal AMOEBA Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  39. Software Environment and Test Data • The R Project • Free, open source statistical software • Extendable with user contributed packages • www.r-project.org • Google Flu Trends • Estimates flu incidence levels using aggregated data about user searches for certain keywords • 90% accurate compared to CDC data • State-level data - updated daily • www.google.org/googleflu • SEER (Surveillance Epidemiology and End Results) • National Cancer Institute incidence, survival, and mortality data Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  40. AMOEBA ArcToolbox for ArcGIS Python Scripts by Jared Aldstadt and Yeming Fan (Aldstadt, 2010) Google Flu Trends – Feb 1, 2009 Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  41. Spatio-Temporal AMOEBA in Python: 2009 Flu Epidemic Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  42. Hmmm… Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  43. R Programming Progress • Compete … • Geoprocessing tasks • Create spatio-temporal • neighbor list • Delineate ecotopes • Sort and eliminate intersecting ecotopes • Returns primary cluster PolyID’s that match the Python results • To Do … • Monte Carlo simulation • Process results and add to the output shapefile • Test, test, test Clusters : SaTScan : AMOEBA : ST AMOEBA : Progress

  44. References Aldstadt, Jared, and Arthur Getis. 2006. Using AMOEBA to Create a Spatial Weights Matrix and Identify Spatial Clusters. Geographical Analysis 38: 327-343.   Aldstadt, Jared. 2010. Spatial Analysis Tools (ArcGIS). Spatial Analysis Tools. http://www.acsu.buffalo.edu/~geojared/tools.htm. Bellec, S, D Hémon, J Rudant, A Goubin, and J Clavel. 2006. Spatial and space–time clustering of childhood acute leukaemia in France from 1990 to 2000: a nationwide study. British Journal of Cancer Duczmal, Luiz, Martin Kulldorff, and Lan Huang. 2006. Evaluation of Spatial Scan Statistics for Irregularly Shaped Clusters. Journal of Computational and Graphical Statistics 15(2): 428-442. Knox, G. 1989. Detection of Clusters. In Methodology of Enquiries into Disease Clustering, ed. P Elliott, 17-22. London: Small Area Health Statistics Unit.   Kulldorff, Martin, Athas, William, Feuer, Eric, Miller, Barry, and Key, Charles. 1998. Evaluating cluster alarms: A space-time scan statistic and brain cancer in Los Alamos, New Mexico. American Journal of Public Health 88(9): 1377-1380.   Kulldorff, Martin, Lan Huang, Linda Pickle, and Luiz Duczmal. 2006. An elliptic spatial scan statistic. Statistics in Medicine 25(22): 3929.   Kulldorff, Martin. 1999. Geographic Information Systems (GIS) community health: Some statistical issues. Journal of Public Health Management and Practice 5(2): 100-106.   Original artwork for parody title slide: http://projectswordtoys.blogspot.com/2009/05/project-sword-annual-1967.html

More Related