1 / 67

Respiratory: Respiratory Failure and ARDS

Respiratory: Respiratory Failure and ARDS. Marnie Quick, RN, MSN, CNRN. Normal Respirations: Tidal Vol; Inspiratory & Expiratory reserve Vol; Residual Vol; Vital Capacity; Anatomical dead space. Normal gas exchange in lung. Blood Supply to Lung. Respiratory Failure.

mignon
Télécharger la présentation

Respiratory: Respiratory Failure and ARDS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Respiratory: Respiratory Failure and ARDS Marnie Quick, RN, MSN, CNRN

  2. Normal Respirations: Tidal Vol; Inspiratory & Expiratory reserve Vol; Residual Vol; Vital Capacity; Anatomical dead space

  3. Normal gas exchange in lung

  4. Blood Supply to Lung

  5. Respiratory Failure • Not a disease process, sign of severe dysfunction • Results when one or both gas exchanging systems inadequate; atmosphere (to lung) or blood • Alveolar ventilation inadeq to meet body’s need • Commonly defined in terms of ABG’s: • PO2 of less than 50 mmHg • PCO2 greater than 50 mmHg • Arterial pH of less than 7.35

  6. Predisposing factors for Resp Failure: Airways/alveoli; CNS; Chest Wall; Neuromuscular- Table in Lewis p 1801 Most common cause: COPD

  7. Classification of Respiratory Failure

  8. Hypoxemic Respiratory Failure • Oxygenation failure- inadequate O2 transfer between alveoli & pulmonary capillary bed • PaO2: 60 mm Hg or less on 60 % O2 • Inadequate O2 saturation of hemoglobin • Causes tissue hypoxia> Metabolic acidosis; cell death; decreased CO; impaired renal function • Common causes: disorders that interfere with O2 transfer into the blood- respiratory or cardiac system (Lewis p. 1800 Table 68-1)

  9. Hypoxemic Respiratory Failure Mechanisms that may lead to Hypoxemia: 1. Mismatch ventilation & perfusion (V/Q mismatch) • V/Q: Volume blood perfusing lungs each minute • Each ml of air for each ml of blood • 1:1= V/Q ratio of 1 • Causes of V/Q mismatch: • Ventilation portion blocked (secretions in airway/alveoli, airway/alveolar collapse, decreased movement chest/ventilation) • Perfusion portion blocked (pulmonary embolus) • Treat: O2(reverse hypoxemia); treat cause

  10. Hypoxemic Respiratory FailureRange of ventilation to perfusion (V/Q relationship) • A. Absolute shunt, no ventilation fluid in alveoli • B. Ventilation partially compromised- secretions • C. Normal lung unit • D. perfusion partially compromised by emboli obstructing blood flow • E. Dead space: no perfusion- obstruction of pulmonary capillary

  11. Hypoxemic Respiratory FailureMechanisms that may lead to Hypoxemia: 2. Shunt- Extreme V/Q mismatch • Occurs when blood leaves heart without gas exchange • Types: • 1. anatomic shunt: O2 blood does not pass through lungs • 2. intrapulmonary shunt- alveoli fill with fluid • Treatment: Mechanical ventilation to force O2 into lungs; treat cause

  12. Hypoxemic Respiratory FailureMechanisms may lead to Hypoxemia: 3. Diffusion limitations • Alveoli membrane thickened or destroyed • Gas exchange across alveolar-capillary membrane can’t occur • Classic sign: hypoxemia present during exercise, not at rest • Treat the cause- pulmonary fibrosis; ARDS

  13. Hypoxemic Respiratory FailureMechanisms may lead to Hypoxemia: Clinical Manifestations of Hypoxemia • Specific: Respiratory: • Dyspnea; tachypnea; prolonged expiration; intercostal muscle retraction; use of accessory muscles in resp;< 80% SpO2; paradoxic chest/abd wall movement with resp cycle (late); cyanosis (late) • Nonspecific: • Cerebral: agitation, disorientation, delirium, restless, combative, confusion, dec LOC, coma (late) • Cardiac: tachycardia, hypertension, skin cool/clammy, dysrhythmias (late), hypotension (late) • Other: fatigue; need to pause to breath when speaking

  14. Hypercapnic Respiratory Failure • Ventilatory failure with insufficient CO2 removal • PaCO2 greater than 45 mm Hg • Arterial pH less than 7.35 • PCO2 rises rapidly and respiratory acidosis develops: PO2 drops more slowly • Common causes: disorders that compromise lung ventilation and CO2 removal (Lewis Table 68-1)

  15. Hypercapic Respiratory Failure • Ventatory failure: Inability of the respiratory system to ventilate out sufficient CO2 to maintain normal PaCO2 • Specific Causes: • Airways/alveoli: asthma, COPD, cystic fibrosis • CNS: drug overdose- depressant, brainstem dysfuction, metabolic causing decreased LOC; high SCI injuries- decrease/absent diaphragm/chest movement • Chest wall: pain, flail chest, rib fractures, mechanical restriction, kyphoscoliosis, obesity • Neuromuscular: resp muscles weak/paralysis- MS, MG, MD, Guilain-Barre Syndrome

  16. Hypercapic Respiratory Failure Clinical Manifestations • Specific: • Respiratory: Dyspnea; dec resp rate or rapid with shallow resp; dec tidal vol; dec min ventilation • Nonspecific: • Cerebral: AM headache; disorientation, progressive sommolence; coma (late) • Cardiac: dyshythmias; hypertension; tachycardia; bounding pulse • Neuromuscular: muscle weakness; dec deep tendon reflexes; Tremor/seizures (late)

  17. Collaborative Care for Respiratory Failure: Diagnostic tests • History/physical assessment • Pulse oximetry • ABG analysis • Chest X-ray • CBC, sputum/blood cultures, electrolytes • EKG • Urinalysis • V/Q scan- if pulmonary embolism suspected • Hemodynamic monitor/pulmonary function tests

  18. Collaborative care for Respiratory Failure Respiratory Therapy • Main treatment- correct underlying cause & restore adequate gas exchange in lung • Elevate HOB • Oxygen Therapy • Maintain PaO2 at least 60 mm Hg • SaO2 at least 90% • Mobilization of secretions • Hydration & humidification • Chest physical therapy • Airway suctioning • Effective coughing & positioning • Positive pressure ventilation • Noninvasive positive pressure ventilation • Intubation with mechanical ventilation

  19. Collaborative Care for Respiratory Failure cont • Drug Therapy • Relief bronchospasm; reduce airway inflam and pulmonary congestion; treat pulmonary infections; reduce anxiety, pain • Medical supportive therapy • Treat underlying cause • Nutritional therapy • Enteral; parenteral • Protein and energy stores

  20. Collaborative Care: Artifical airways- tracheostomy and endotracheal tubes

  21. Endotracheal tube

  22. Taping an endotracheal tube

  23. Suctioning with closed (inline) suctioning-used with tracheostomy or endotrach tubes

  24. Complications of endotracheal intubation • 1. Extubation • Restraints • 2. Aspiration • Tube at right allows for subglottal suctioning

  25. Independent Lung Ventilation

  26. Collaborative Care: Mechanical Ventilation • Provide adeq gas exchange • Types- Positive, Neg • Settings- Table 66-11 • Modes- Table 66-12 • Criteria to put on vent • RR > 35-45 • pCO2 >45 • pO2 <50

  27. Types: Negative pressure ventilator

  28. Types: Positive pressure mechanical ventilation with endotracheal tube (PPV)

  29. Types: Positive pressure- Noninvasive (tight fitting mask) positive pressure ventilation (CPAP)

  30. Settings and complications with mechanical ventilation

  31. Ventilator settings (Table 66-11 p. 1761)

  32. Alarm settings • Assess your patient – not the alarm!!!!! • Never turn alarms off • Alarms sound when you have low pressure or high pressure in the ventilator • Note “alarm silence” and “alarm reset” on picture to the right

  33. Low Pressure • Circuit leaks  • Airway leaks  • Chest tube leaks  • Patient disconnect from vent or tube • High Pressure • Patient coughing  • Secretions or mucus in the airway  • Patient biting tube  • Airway problems  • Reduced lung compliance (as a pneumothorax)  • Patient fighting the ventilator  • Accumulation of water in the tube • Kinking of tube 

  34. Modes of PPV • Volume Ventilation • Predetermined tidal volume (TV) is delivered with each inspiration • Tidal volume (TV) is consistent, airway pressures will vary • Pressure Ventilation • Predetermined peak inspiratory pressure • Tidal volume (TV) will vary, airway pressures will be consistent

  35. Ventilator settings of Modes (Table 66-12 p.1761) • Volume Modes • CMV; AC; SIMV • Predetermined tidal volume (TV) is delivered with each inspiration • Tidal volume (TV) is consistent, airway pressures will vary • Pressure Modes • PSV; PC-IRV • Predetermined peak inspiratory pressure • Tidal volume (TV) will vary, airway pressures will be consistent • Other Modes • PEEP and CPAP

  36. Ventilator settings- SIMV and IMV

  37. Ventilator settings- Other modes • Positive End-Expiratory Pressure • Positive pressure is maintained at the end of expiration • Pressure at end expiration keeps alveoli from collapsing, improving functional residual capacity (FRC) • Used with other modes on the ventilator • Purpose is to improve oxygenation while limiting risk of O2 toxicity • Used to treat ARDS

  38. PEEP

  39. Ventilator settings- other modes • Continuous Positive Airway • Similar to PEEP • However, pressure in CPAP is delivered continuously • Prevents airway pressure from falling to zero • Measured in cm H20 • Can be administered noninvasively (by mask) or through ETube or TTube • Used in treatment of obstructive sleep apnea

  40. Complications of Positive Pressure Mechanical ventilation • Cardiovascular: decreased CO; inc intrathoracic pressure • Pulmonary: Barotrauma; Volutrauma; alveolar hypoventilation/hyperventilation; ventilator-associated pneumonia • Sodium and water imbalance • Neurological: impaired cerebral bl flow>IICP • Gastrointestional: stress ulcer/GI bleed; gas; constipation • Musculoskeletal: dec muscle tone; contractures; footdrop; pressure ulcers from BR • Psychosocial: physical & emotional stress; fight vent

  41. Nursing Care for complications • Neurological – elevate head of bed, keep body in proper alignment • Respiratory – monitor cuff inflation, vent settings, ABG’s, for hyperventilation, hypoxemia • Cardiovascular – monitor NIBP and arterial pressures, CO, capillary refill, HR & rhythm • Gastrointestinal – set up schedule for BM, admin laxatives, PPI, admin tube feedings • Musculoskeletal – passive & active ROM, turn q2h, keep body in proper alignment

  42. Psychological needs- Need for information; regain control; to hope; to trust • Involve in discision making, medication for sedation (proplfol), analgesia (fentanyl), neuromuscular blocking agents (Nimbex)

  43. Other problems when on mechanical ventilation • Machine disconnection or malfunction • Nutrition needs • Weaning from ventilator/ extubation • Spontanenous breathing trial (SBT) Hospital protocol • Document progress • Table 66-13 p.1767- readiness/assessment

  44. Exhaled C02 (ETC02) normal 35-45 Used when trying to wean patient from a ventilator

  45. Nursing assessment specific to Respiratory Failure • Assess both airway and lungs- note picture to right • Refer to hypoxic and hypercapnic respiratory failure symptoms • Table 68-4 p. 1806 • Subjective data • Objective data

  46. Cyanosis

  47. Relevant Nursing Problems related to Respiratory Failure • Prevention of acute respiratory failure • Nursing Care Plans (p.1807-09) • Gerontology considerations • Nursing Care Plans Mechanical ventilation (NCP 66-1 p.1754) • Suctioning procedure and oral care (p.1757-8)

  48. Acute Respiratory Distress Syndrome ARDS • Sudden progressive form of acute respiratory failure • Alveolar capillary membrane becomes damaged and more permeable to intravascular fluid • Results in noncardiac pulmonary edema and progressive refractory hypoxemia • ARDS is NOT primary! • Follows various pulmonary or systemic conditions • Sepsis is the most common cause

More Related