1 / 45

The Versatility of Thermal Photons and Dileptons

The Versatility of Thermal Photons and Dileptons. Ralf Rapp Cyclotron Institute + Department of Phys & Astro Texas A&M University College Station, USA TPD Workshop BNL (Upton, NY), 05.-07.12.11. e + e -. γ. 1.) Introduction: Components of EM Probes HICs.

miltonr
Télécharger la présentation

The Versatility of Thermal Photons and Dileptons

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Versatility ofThermal Photons and Dileptons Ralf Rapp Cyclotron Institute + Department of Phys & Astro Texas A&M University College Station, USA TPD Workshop BNL (Upton, NY), 05.-07.12.11

  2. e+ e- γ 1.) Introduction:Components of EM Probes HICs • Thermal Emission Rate • micro-physics: • → Electro-Magnetic spectral function • Space-Time Evolution of Fireball • macro-physics (equation of state: e(P)) • → temperature + flow fields • Equation of State • - governed by micro-physics • (deg. of freedom, interactions) • - drives the macro-physics • - encodes deconfinement + chiral restoration

  3. Outline 2.) Transport Properties  EM Conductivity + Low-Energy Photons 3.) Spectral Properties  Vector Spectral Functions + the Fate of Resonances  Dilepton Invariant-Mass Spectra 4.) Chiral Restoration  Criteria: Axialvector, Lattice QCD, pert. QCD  QCD +Weinberg Sum Rules 5.) Fireball Properties  Lifetime, Temperature, Collectivity 6.) Conclusions

  4. 2.) Transport: Electric Conductivity • hadronic theories (T~150MeV): • - chiral pert. theory (pion gas): sem / T ~ 0.11 e2 • - hadronic many-body theory: sem / T ~ 0.09 e2 [Fernandez-Fraile+ Gomez-Nicola ’07] • lattice QCD (T ~ (1.5-3) Tc ): • sem /T ~ (0.26±0.02) e2 [Gupta ’04, Aarts et al ’07, Ding et al. ‘11] • soft-photon limit of • thermal emission rate • EM Susceptibility ( → charge fluctuations): • Q2 -Q 2 =χem = Πem(q0=0,q→0)

  5. Add pp→ppgBremsstrahlung [Liu+RR’06] 2.2 Soft Photons at SPS: WA98 Thermal Radiation + pQCD [Turbide,RR +Gale’04]

  6. Outline 2.) Transport Properties  EM Conductivity + Low-Energy Photons 3.) Spectral Properties  Vector Spectral Functions + the Fate of Resonances  Dilepton Invariant-Mass Spectra 4.) Chiral Restoration  Criteria: Axialvector, Lattice QCD, pert. QCD  QCD +Weinberg Sum Rules 5.) Fireball Properties  Lifetime, Temperature, Collectivity 6.) Conclusions

  7. 3.) EM Spectral Function I: Fate of Resonances Im Pem(M) in Vacuum Im Πem(M,q;mB,T) • Electromagn. spectral function • -√s ≤ 1 GeV: non-perturbative • -√s > 1.5 GeV: perturbative (“dual”) • Vector resonances “prototypes” • - representative for bulk hadrons: • neither Goldstone nor heavy flavor • Modifications of resonances • ↔ phase structure: • - hadron gas → Quark-Gluon Plasma • - realization of transition? e+e-→ hadrons √s = M

  8. 3.2 Phase Transition(s) in Lattice QCD - - ≈ qq / qq “Tcchiral”~150MeV “Tcconf” ~170MeV • different “transition” temperatures?! • smooth transitions! (smooth e+e- rate) • partial chiral restoration in “hadronic • phase” ?! (low-mass dileptons!) • leading-order hadron gas

  9. 3.3Vector Mesons in Hadronic Matter > rB /r0 0 0.1 0.7 2.6 > [Chanfray et al, Herrmann et al, Asakawa et al, RR et al, Koch et al, Klingl et al, Post et al, Eletsky et al, Harada et al …] Dr (M,q;mB ,T) = [M 2 - mr2 -Srpp -SrB -SrM ] -1 r-Propagator: B*,a1,K1... r Sp r SrB,rM= Selfenergies: Srpp= N,p,K… Sp Constraints:decays:B,M→ rN, rp, ... ; scattering:pN→rN, gA, … SPS RHIC

  10. 3.4 “Smoothness” of Dilepton Rates across “Tc” dRee /dM2 ~ ∫d3q f B(q0;T) Im Pem - • on-shell qq vs. pp annihil. • in transport code • smooth transition hadrons ↔ QGP?! • resonance melting + chiral mixing

  11. 3.5 Dilepton Rates vs. Exp.: NA60 “Spectrometer” • Evolve rates over fireball expansion: Thermal m+m- Emission Rate Acc.-correctedm+m- Excess Spectra In-In(158AGeV) [NA60 ‘09] Mmm [GeV] [van Hees+RR ’08] • invariant-mass spectrum directly • reflects thermal emission rate!

  12. 3.5.2 Sensitivity of NA60 to Spectral Function Emp. scatt. ampl. + T-r approximation Hadronic many-body Chiral virial expansion [CERN Courier Nov. 2009] • Significant differences in low-mass region • Overall slope T~150-200MeV (!)

  13. 3.5.3 Sensitivity to Spectral Function II • avg. Gr(T~150MeV)~350-400MeV • Gr (T~Tc) ≈ 600 MeV → mr • driven by baryons • Breit-Wigner shape insufficient: • ImSr ~ - q0 Gvac (1+ arB/r0) Mmm [GeV]

  14. 3.6 Low-Mass e+e- at RHIC: PHENIX vs. STAR • “large” enhancement not accounted • for by theory • QGP radiation not an option… • (very) low-mass region • overpredicted?! (SPS?!)

  15. Outline 2.) Transport Properties  EM Conductivity + Low-Energy Photons 3.) Spectral Properties  Vector Spectral Functions + the Fate of Resonances  Dilepton Invariant-Mass Spectra 4.) Chiral Restoration  Criteria: Axialvector, Lattice QCD, pert. QCD  QCD +Weinberg Sum Rules 5.) Fireball Properties  Lifetime, Temperature, Collectivity 6.) Conclusions

  16. 4.) Criteria for Chiral Restoration • Vector (r) – Axialvector (a1) degenerate [Weinberg ’67, Das et al ’67] pQCD • QCD sum rules: • medium modifications ↔ vanishing of condensates • Agreement with thermal lattice-QCD • Approach to perturbative rate (QGP)

  17. p Sp Sp Sp r Sr Sr Sr 4.1 Axialvector in Medium: Dynamical a1(1260) p a1 resonance + + . . . = Vacuum: r In Medium: + + . . . [Cabrera,Jido, Roca+RR ’09] • in-medium p + r propagators • broadening of p-r scatt. Amplitude • pion decay constant in medium:

  18. 0.2% 1% 4.2 QCD Sum Rules: r(770) in Nuclear Matter [Shifman,Vainshtein,+Zakharov ’79] • dispersion relation: [Hatsuda+Lee’91, Asakawa+Ko ’92, Klingl et al ’97, Leupold et al ’98, Kämpfer et al ‘03, Ruppert et al ’05] • rhs:hadronic model (s>0): • lhs:OPE (spacelike Q2): nonpert. Wilson coeffs. (condensates) • ~50% reduced in nuclear matter ◊ ← vacuum

  19. 4.3 Hadronic - Perturbative QGP - Lattice QCD dRee /dM2 ~ ∫d3q f B(q0;T) Im Pem • Hadronic, pert. + lattice QCD • tend to “degenerate” toward~Tc • Quark-Hadron Duality at all M?! • ( degenerate axialvector SF!) dRee/d4q 1.4Tc (quenched) q=0 - [qq→ee] [HTL] [Ding et al ’10] [RR,Wambach et al ’99]

  20. 4.3.2 Euclidean Correlators: Lattice vs. Hadronic • Euclidean Correlation fct. Lattice (quenched) [Ding et al ‘10] Hadronic Many-Body [RR ‘02] • “Parton-Hadron Duality” of lattice and in-medium hadronic?!

  21. 4.3.3 Back to Spectral Function -Im Pem /(C T q0) • suggests approach to chiral restoration + deconfinement

  22. Outline 2.) Transport Properties  EM Conductivity + Low-Energy Photons 3.) Spectral Properties  Vector Spectral Functions + the Fate of Resonances  Dilepton Invariant-Mass Spectra 4.) Chiral Restoration  Criteria: Axialvector, Lattice QCD, pert. QCD  QCD +Weinberg Sum Rules 5.) Fireball Properties  Lifetime, Temperature, Collectivity 6.) Conclusions

  23. 5.1 Low-Mass Dileptons: Chronometer In-In Nch>30 • first “explicit” measurement of interacting-fireball lifetime: • tFB≈ (6.5±1) fm/c • search for critical slowing down!

  24. 5.2 Intermediate-Mass Dileptons: Thermometer • use invariant continuum radiation (M>1GeV): no blue shift, Tslope = T ! Thermometer • independent of partition HG vs QGP (dilepton rate continuous/dual) • initial temperature Ti ~ 190-220 MeV at CERN-SPS

  25. 5.3 Dimuon pt-Spectra and Slopes: Barometer Effective Slopes Teff • theo. slopes originally too soft • increase fireball acceleration, • e.g. a┴ = 0.085/fm → 0.1/fm • insensitive to Tc=160-190MeV

  26. 5.4 Direct Photons at RHIC Spectra Elliptic Flow ← excess radiation • Teffexcess = (220±25) MeV • QGP radiation? • radial flow? • v2g,dir as large as that of pions!? • underpredcited by QGP-dominated • emission [Holopainen et al ’11,…]

  27. 5.4.1 Revisit Ingredients Emission Rates Fireball Evolution • multi-strange hadrons at “Tc” • v2bulkfully built up at hadronization • chemical potentials for p, K, … • Hadron - QGP continuity! [Turbide et al ’04] [van Hees et al ’11]

  28. 5.4.2 Thermal Photon Spectra + v2: PHENIX thermal + prim. g • both spectral slope and v2 point at • blue-shifted hadronic source… • to be tested in full hydro [van Hees,Gale+RR ’11]

  29. 6.) Conclusions:Potential of Thermal EM Radiation at RHIC • Transport: conductivity, susceptibility (→ diffusion, h/s) • Spectrometer: “prototype” in-med. spectral function, • hadron-to-quark transition • Chiral Restoration: Weinberg + QCD sum rules, • lattice QCD (mB~0!) + perturbative limit • Thermometer: int.-mass dileptons (heavy-flavor subtracted) • Chronometer: search for anomalous fireball lifetimes • Barometer: pt spectra (M=0-2GeV) • Quality control: rates (constraints, continuity), medium evolution, • consistency with SPS, … • Needed: NA60-quality data • RHIC premiere facility for soft EM probes of transition region

  30. 2.3.2 NA60 Mass Spectra: pt Dependence Mmm [GeV] • more involved at pT>1.5GeV: Drell-Yan, primordial/freezeout r , …

  31. 4.1.2 Mass-Temperature Emission Correlation • generic space-time argument: •  • Tmax ≈ M / 5.5 • (forImPem =const) • thermal photons: • Tmax≈ (q0/5) * (T/Teff)2 • → reduced by flow blue-shift! • Teff ~ T * √(1+b)/(1-b)

  32. 4.7.2 Light Vector Mesons at RHIC + LHC • baryon effects important even at rB,tot= 0 : • sensitive to rBtot= rB + rB (r-N and r-N interactions identical) • w also melts, f more robust ↔ OZI - -

  33. = = 5.3 Intermediate Mass Emission: “Chiral Mixing” [Dey, Eletsky +Ioffe ’90] • low-energy pion interactions fixed by chiral symmetry 0 0 0 0 • mixing parameter • degeneracy with perturbative • spectral fct. down to M~1GeV • physical processes at M≥ 1GeV: • pa1→ e+e- etc. (“4p annihilation”)

  34. 3.2 Dimuon pt-Spectra and Slopes: Barometer pions: Tch=160MeV a┴ =0.1/fm pions: Tch=175MeV a┴ =0.085/fm • modify fireball evolution: • e.g. a┴ = 0.085/fm → 0.1/fm • both large and small Tccompatible • with excess dilepton slopes

  35. 2.3.2 Acceptance-Corrected NA60 Spectra Mmm [GeV] Mmm [GeV] • more involved at pT>1.5GeV: Drell-Yan, primordial/freezeout r , …

  36. 4.4.3 Origin of the Low-Mass Excess in PHENIX? • QGP radiation insufficient: • space-time , lattice QGP rate + • resum. pert. rates too small • must be of long-lived hadronic origin • Disoriented Chiral Condensate (DCC)? • Lumps of self-bound pion liquid? • Challenge: consistency with hadronic data, NA60 spectra! [Bjorken et al ’93, Rajagopal+Wilczek ’93] - “baked Alaska” ↔ small T - rapid quench+large domains ↔ central A-A - ptherm + pDCC → e+ e- ↔ M~0.3GeV, small pt [Z.Huang+X.N.Wang ’96 Kluger,Koch,Randrup ‘98]

  37. 2.2 EM Probes at SPS • all calculated with the same e.m. spectral function! • thermal source: Ti≈210MeV, HG-dominated, r-meson melting!

  38. 2.3.3 Spectrometer III: Before Acceptance Correction emp. ampl. + “hard” fireball hadr. many-body + fireball schem. broad./drop. + HSD transport chiral virial + hydro • Discrimination power much reduced • can compensate spectral “deficit” by larger flow: lift pairs into acceptance

  39. 4.2 Improved Low-Mass QGP Emission • LO pQCD spectral function: rV(q0,q) = 6∕9 3M2/2p [1+QHTL(q0)] • 3-momentum augmented lattice-QCD rate (finite g rate)

  40. 4.4.1 Variations in QGP Radiation • improvements in QGP rate insufficient

  41. 4.4.2 Variations in Fireball Properties • variations in space-time evolution only • significant in (late) hadronic phase

  42. 4.1 Nuclear Photoproduction: rMeson in Cold Matter g + A → e+e- X • extracted • “in-med” r-width • Gr≈ 220 MeV e+ e- Eg≈1.5-3 GeV g r [CLAS+GiBUU ‘08] • Microscopic Approach: + in-med. r spectral fct. product. amplitude full calculation fix density 0.4r0 Fe-Ti r g N [Riek et al ’08, ‘10] M[GeV] • r-broadening reduced at high 3-momentum; need low momentum cut!

  43. 1.2 Intro-II:EoS and Particle Content • Hadron Resonance Gas until close to Tc • - but far from non-interacting: • short-lived resonances R: • a + b → R → a + b,tR ≤ 1 fm/c • Parton Quasi-Particles shortly above Tc • - but large interaction measure I(T) = e -3P  both “phases” strongly coupled (hydro!): - large interaction rates → large collisional widths - resonance broadening → melting → quarks - broad parton quasi-particles - “Feshbach” resonances around Tc (coalescence!)

  44. 2.3.6 Hydrodynamics vs. Fireball Expansion • very good agreement • between original • hydro [Dusling/Zahed] • and fireball [Hees/Rapp]

  45. e+ e- γ 2.1 Thermal Electromagnetic Emission EM Current-Current Correlation Function: Thermal Dilepton and Photon Production Rates: Im Πem(M,q) Im Πem(q0=q) r-meson dominated Low Mass: ImPem~ [ImDr + ImDw /10 + ImDf /5]

More Related