1 / 15

Ion-beam and plasma technologies and equipments

Ion-beam and plasma technologies and equipments. Presenting author Dr. Sergey M. Zavadskiy. Dr. Dmitriy A. Golosov Dr. Sergey M. Zavadski e-mail: svad@bsuir.by phone +375-17-2-93-80-79 fax/phone +375-17-2-93-88-35. Minsk 2013. 1. Thin film research laboratory.

Télécharger la présentation

Ion-beam and plasma technologies and equipments

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ion-beam and plasma technologies and equipments Presenting author Dr. Sergey M. Zavadskiy Dr. Dmitriy A. Golosov Dr. Sergey M. Zavadski e-mail:svad@bsuir.by phone +375-17-2-93-80-79 fax/phone +375-17-2-93-88-35 Minsk 2013

  2. 1. Thin film research laboratory The Thin Film Research Laboratory is engaged in research and development of equipment and technologies for ion-plasma deposition of thin films applied in optics, micro- and optoelectronics, as well as of wear-resistant, protective – decorative thin films. The Laboratory activities and fields of research:·        Development of technological ion sources, such as ion beam sputtering, double ion-beam sputtering, ion-beam assisted deposition (IBAD)·        Design of magnetron sputtering and unbalanced magnetron sputtering systems, including those intended for low-pressure magnetron sputtering ·        Processes of reactive ion-beam and magnetron sputtering·        Processes of unbalanced magnetron sputtering·        Ion beam neutralization·        Development of ion-plasma deposition processes for reflecting multilayer structures characterized by high constancy of parameters·        Development of compositions and processes for deposition of high-K and low-K dielectrics·        Development of compositions and processes for deposition of magneto-resistive thin films·        Development of compositions and processes for deposition of solid electrolyte and cathode layers for solid oxide fuel cell ·        Ion polishing of optical parts

  3. 4. DOUBLE-BEAM ION SOURCE BASED ON HALL-CURRENT ACCELERATOR DBIS-001 Applications·         Ion-beam sputtering;·         Reactive ion-beam sputtering;·         Double ion-beam sputtering;·         Ion pre-cleaning of surfaces;·         Ion-beam assisted deposition;·         Ion mixing;·         Ion etching.Specifications of an ion source with a target of  80 mmSputtering stage:·         Anode voltage 450 – 6000 V;·         Ion energy 300 – 2000 eV;·         Discharge current up to 300 mA;·         Ion beam current up to 250 mA;·         Working pressure 0.01 - 0.06 Pa;·         Gas flow up to 50 sccm;·         Working gases Ar, O2, N2, CH4, etc.·         Deposition rate up to 0.8 nm/secAssisting stage:·         Anode voltage 450 – 3000 V (max. - 6000 V);·         Ion energy 300 – 1000 eV (max. - 2000 eV);·         Ion beam current up to 120 mA;·         Working pressure 0.01 - 0.06 Pa;·         Gas flow up to 30 sccm;·         Working gases Ar, O2, N2, CH4, etc.

  4. 2. SPUTTERING ION SOURCE BASED ON HALL-CURRENT ACCELERATOR SPIS-002 The sputtering ion source based on Hall-current accelerator is designed for deposition of thin films of dielectric, metals and semiconductors.Applications·        Ion-beam sputtering;·        Reactive ion-beam sputtering.Specifications of an ion source with a target of  80 mm·        Anodic voltage 450 – 6000 V;·        Ion energy 300 – 2000 eV;·        Discharge currentup to 300 mA·        Ion beam current up to 250 mA;·        Working pressure 0.01 - 0.06 Pa;·        Gas flow up to 50 sccm;·        Work gases Ar, O2, N2, CH4, etc.·        Deposition rate up to 0.8 nm/secThe ion source allows sputtering of metallic, semiconductor and dielectric (SiO2, BN, graphite, etc.) targets. It may be equipped with a rotary target holder for four targets of different material to form multilayer structures within a single vacuum cycle (Fig. 2). It is possible to obtain component films by applying mixtures of rare and reactive gases (oxygen, nitrogen, etc.) when sputtering metallic targets.

  5. 3. ION SOURCE BASED ON HALL-CURRENT ACCELARATOR FOR ION-ASSISTED DEPOSITION ASIS-002 Applications·        Ion-beam assisted deposition (IBAD) in combination with electron-beam laser or arc evaporators and ion-beam sputtering systems;·        Ion mixing;·        Ion pre-cleaning;·        Ion-beam etching with chemically active gases used;·        Direct beam deposition (DiBD)·        Ion-beam assisted magnetron sputtering (IBAM)Advantages·        High layer adhesion;·        Possible to control internal stresses within the layer;·        Low porosity of deposited layers;·        Controllable stoichiometry when depositing compositions.Specifications of the ion source·        Anode voltage 1200 - 6000 V ·        Ion energy 400 - 2000 eV·        Ion beam current up to 200 mA·        Working pressure 0.01 - 0.06 Pa·        Gas flow up to 40 sccm;·        Working gases Ar, O2, N2, hydrocarbons, chlorine- and fluorine containing gases.

  6. 5. RF/DC MAGNETRON SPUTTERING SYSTEM MIRAGE-010.080 Specifications· magnetic system . . . . . . . . . . . . . . . . . . . . . . . . . . Nd-Fe-B permanent magnets;·        target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80 mm (thickness 1 – 6 mm)*;·        substrate size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6060 mm**;·        discharge voltage DC . . . . . . . . . . . . . . . . . . . . . . .300 – 600 V;·        discharge current DC. . . . . . . . . . . . . . . . . . . . . . . up to 3.0 A;·        RF power (13.56 МГц) . . . . . . . . . . . . . . . . . . . . . up to 1.0 kW;·        working gases . . . . . . . . . rare or mixture of rare and reactive gases (O2, N2, CxHy);·        gas flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 – 60 sccm;·        working pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.06 - 1.0 Pa;·        deposition rate (Al target) DC 1 kW . . . . . . . . . . . . . . . . . . . . . . . . up to 20.0 nm/s; RF (13.56 MHz, 1000 W) . . . . . . . . . . . .up to 5.0 nm/s;·        overall dimensions . . . . . . . . . . . . . . . . . . . . . . . .  127×80 mm;·        mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . no more than 5.0 kg. Application·        DCmagnetron sputtering;·        Pulse MFmagnetron sputtering;·        RF magnetron sputtering·        DC/RFreactivemagnetron sputtering; ·        Pulsemagnetron sputtering.

  7. 6. RF/DC MAGNETRON SPUTTERING SYSTEM RIF-001.036 ApplicationsDC/RF magnetron sputtering system RIF-001.036 is designed for deposition precious metals and metals of platinum group, semiconductor and dielectric thin film by are methods of DC, RF (13.56 MHz), pulseMF (10 – 200 kHz) magnetron sputtering and reactive magnetron sputtering.Specifications·        magnetic system . . . . . . . . . . . . Nd-Fe-B permanent magnets;·        target . . . . . . . . . . . . . . . . . . .  36 mm (thickness 1 – 4 mm);·        substrate size . . . . . . . . . . . . . . . . . . . . . . . . .3030 mm;·        discharge voltage DC . . . . . . . . . . . . . . . . . . 300 – 600 V;·        discharge current DC. . . . . . . . . . . . . . . . . . .up to 1.0 А;·        RF power (13.56 MHz) . . . . . . . . . . . . . . . . up to 200 W;·        working gases . . . . . . . . . rare or mixture of rare and reactive gases (O2, N2, CxHy); ·        gas flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 – 60 sccm;·        working pressure . . . . . . . . . . . . . . . . . . . . . . . . .0.06 - 1.0 Pa;·        deposition rate (Al target) DC 200W . . . . . . . . . . . . . . . . . . . . . up to 20.0 nm/s; ·        RF (13.56 MHz, 200 W) . . . . . . . . . . up to 5.0 nm/s;·        overall dimensions . . . . . . . . . . . . . . . . . . . . . . 127×80 mm;mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .no more than 2.0 kg.

  8. 7. ION-BEAM AND ION-PLASMA THIN FILM TECHNOLOGIES One of the laboratory's areas of expertise is development and implementation of new multi-tasking thin-film technology. The interests include: ion-beam and ion-plasma deposition technologies for multi-layer structures for optics and optoelectronics (films of SiO2, ZnO, TiO2, Y2O3, Ta2O5, In2O3, AlN, Al2O3, ITO etc.) on large-format substrates; ·        ion-plasma deposition technologies for reflecting structures (laser mirrors with high laser radiation tolerance, IR mirrors and heat shields with high stability of parameters under high temperatures and humidity); ·        multi-layer structure deposition technologies based on refractory compositions (TiB2, Si3N4, AlN, CrN, TiN, etc); ·        development of processes for super-hard coatings based on diamond-like coatings (DLC), cubic Boron nitride (c-BN), and Carbon nitride (-C3N4) by methods of IBAD, unbalanced magnetron sputtering and double-beam ion sputtering; development of compositions and processes for high-K and low-K dielectrics.

  9. 8. PROTECTIVE THERMOCONDUCTING COATING FOR THERMOPRINTING HEAD • REQUIREMENTS: • High thermal conductivity • High wear-resistance Themoprinting head with deposited by reactive magnetron sputtering AlN coating Thickness of AlN film > 1.2 mWear-resistance > 25 km of paper

  10. 9. PRODUCTION OF HEATER ON THE ALUMINUM SUBSTRATE Developed the composition of multicomponent resistive alloy and technology of ion-beam deposition Advantages ·Low mass ·       High power ·      Possibility to mounting on heating object Specifications ·Overall dimensions 60481, 60241, 30481 mm ·      Working voltage 12, 36, 220 V ·      Power density up to 8.5 W/cm2 ·      Overheating temperature > 60o C

  11. 10. The technology and equipment for vacuum decorative metallization of ABS plastic Developed the technology and equipment for vacuum decorative metallization of ABS plastic. Its technology and equipment now used in foreign company «Alcopack» Magnetron sputtering system МSPR.830.001 with target 830×100 mm

  12. 11. The technology and equipment for depositing IR mirror onto the inner surface of Epiquar – 121/8.00.00 products Ion-plasma system for deposition IR mirror onto the inner surface of products

  13. 12. REFLECTION SPECTRUMS OF IR MIRRORS TheEpiquar – 121/8.00.00 product with deposited Al/SiO2 IR mirror a – Al mirror after depositionb – Al mirror in two month later after deposition c – structure Al/SiO2 in two month later after deposition d – structure Al/SiO2 after thermal processing at 300 С (30 min)

  14. 13. The ion plasma technology of high thermostability conducting coatings for CRT displays electron gun REQUIREMENTS:·        sheet resistance< 300 Ohm/·        Покрытия должны выдерживать нагрев открытым пламенем грелки в течение 6 с без изменения сопротивления. ·        Исключается отслаивание и расстрескивание покрытия после воздействия открытого пламени.·        Change of sheet resistanceafter influence of fire no more than 10 %Developed the ion plasma technology of high thermostability conducting coatings for CRT displays electron gun.Productivityup to 2400 parts in shift.Manufactured more than1 000 000 parts.

  15. 14. The technology of magnetron deposition for Ni/Cr contact layers for thermo-resistors Developed the technology for magnetron deposition of Ni/Cr contact layers for thermo-resistors. Its technology now used in Vitebsk factory of radio component «Monolit» Double layer films deposited on two side of thermo-resistorProductivity up to 1800 substrate at one timeProcess time 50 min Thermo-resistors with deposited Ni/Cr contact layers

More Related