1.59k likes | 1.79k Vues
Automatic Performance Tuning of Sparse Matrix Kernels: Recent Progress. Jim Demmel, Kathy Yelick Berkeley Benchmarking and OPtimization (BeBOP) Project http://bebop.cs.berkeley.edu U. C. Berkeley, EECS Dept. October2004. Outline. Motivation for Automatic Performance Tuning
E N D
Automatic Performance Tuningof Sparse Matrix Kernels: Recent Progress Jim Demmel, Kathy Yelick Berkeley Benchmarking and OPtimization (BeBOP) Project http://bebop.cs.berkeley.edu U. C. Berkeley, EECS Dept. October2004
Outline • Motivation for Automatic Performance Tuning • Recent results for sparse matrix kernels • Application to T3P, Omega3P • OSKI = Optimized Sparse Kernel Interface • Future Work
Prizes • Best Paper, Intern. Conf. Parallel Processing, 2004 • “Performance models for evaluation and automatic performance tuning of symmetric sparse matrix-vector multiply” • Best Student Paper, Intern. Conf. Supercomputing, Workshop on Performance Optimization via High-Level Languages and Libraries,2003 • Best Student Presentation too, to Richard Vuduc • “Automatic performance tuning and analysis of sparse triangular solve” • Finalist, Best Student Paper, Supercomputing 2002 • To Richard Vuduc • “Performance Optimization and Bounds for Sparse Matrix-vector Multiply” • Best Presentation Prize, MICRO-33: 3rd ACM Workshop on Feedback-Directed Dynamic Optimization, 2000 • To Richard Vuduc • “Statistical Modeling of Feedback Data in an Automatic Tuning System”
Motivation for Automatic Performance Tuning • Historical trends • Sparse matrix-vector multiply (SpMV): 10% of peak or less • 2x faster than CSR with “hand-tuning” • Tuning becoming more difficult over time • Performance depends on machine, kernel, matrix • Matrix known at run-time • Best data structure + implementation can be surprising • Our approach: empirical modeling and search • Up to 4x speedups and 31% of peak for SpMV • Many optimization techniques for SpMV • Several other kernels: triangular solve, ATA*x, Ak*x • Proof-of-concept: Integrate with Omega3P • Release OSKI Library, integrate into PETSc
Example: The Difficulty of Tuning • n = 21216 • nnz = 1.5 M • kernel: SpMV • Source: NASA structural analysis problem • 8x8 dense substructure
Best: 4x2 Reference Speedups on Itanium 2: The Need for Search Mflop/s Mflop/s
Ultra 2i - 9% 63 Mflop/s Ultra 3 - 6% 109 Mflop/s SpMV Performance (Matrix #2): Generation 2 35 Mflop/s 53 Mflop/s Pentium III - 19% Pentium III-M - 15% 96 Mflop/s 120 Mflop/s 42 Mflop/s 58 Mflop/s
Power3 - 13% 195 Mflop/s Power4 - 14% 703 Mflop/s SpMV Performance (Matrix #2): Generation 1 100 Mflop/s 469 Mflop/s Itanium 1 - 7% Itanium 2 - 31% 225 Mflop/s 1.1 Gflop/s 103 Mflop/s 276 Mflop/s
Extra Work Can Improve Efficiency! • More complicated non-zero structure in general • Example: 3x3 blocking • Logical grid of 3x3 cells • Fill-in explicit zeros • Unroll 3x3 block multiplies • “Fill ratio” = 1.5 • On Pentium III: 1.5x speedup!
Summary of Performance Optimizations • Optimizations for SpMV • Register blocking (RB): up to 4x over CSR • Variable block splitting: 2.1x over CSR, 1.8x over RB • Diagonals: 2x over CSR • Reordering to create dense structure + splitting: 2x over CSR • Symmetry: 2.8x over CSR, 2.6x over RB • Cache blocking: 2.2x over CSR • Multiple vectors (SpMM): 7x over CSR • And combinations… • Sparse triangular solve • Hybrid sparse/dense data structure: 1.8x over CSR • Higher-level kernels • AAT*x, ATA*x: 4x over CSR, 1.8x over RB • A2*x: 2x over CSR, 1.5x over RB
Potential Impact on Applications: T3P • Source: SLAC [Ko] • 80% of time spent in SpMV • Relevant optimization techniques • Symmetric storage • Register blocking • On Single Processor Itanium 2 • 1.68x speedup • 532 Mflops, or 15% of 3.6 GFlop peak • 4.4x speedup with 8 multiple vectors • 1380 Mflops, or 38% of peak
Potential Impact on Applications: Omega3P • Application: accelerator cavity design [Ko] • Relevant optimization techniques • Symmetric storage • Register blocking • Reordering • Reverse Cuthill-McKee ordering to reduce bandwidth • Traveling Salesman Problem-based ordering to create blocks • Nodes = columns of A • Weights(u, v) = no. of nz u, v have in common • Tour = ordering of columns • Choose maximum weight tour • See [Pinar & Heath ’97] • 2x speedup on Itanium 2, but SPMV not dominant
“Microscopic” Effect of RCM Reordering Before: Green + Red After: Green + Blue
“Microscopic” Effect of Combined RCM+TSP Reordering Before: Green + Red After: Green + Blue
Optimized Sparse Kernel Interface - OSKI • Provides sparse kernels automatically tuned for user’s matrix & machine • BLAS-style functionality: SpMV.,TrSV, … • Hides complexity of run-time tuning • Includes new, faster locality-aware kernels: ATA*x, … • Faster than standard implementations • Up to 4x faster matvec, 1.8x trisolve, 4x ATA*x • For “advanced” users & solver library writers • Available as stand-alone library (Oct ’04) • Available as PETSc extension (Dec ’04) • Lines of code: ?? written by us, ?? generated
How the OSKI Tunes (Overview) Application Run-Time Library Install-Time (offline) 1. Build for Target Arch. 2. Benchmark Workload from program monitoring History Matrix Generated code variants Benchmark data 1. Evaluate Models Heuristic models 2. Select Data Struct. & Code To user: Matrix handle for kernel calls Extensibility: Advanced users may write & dynamically add “Code variants” and “Heuristic models” to system.
How the OSKI Tunes (Overview) • At library build/install-time • Pre-generate and compile code variants into dynamic libraries • Collect benchmark data • Measures and records speed of possible sparse data structure and code variants on target architecture • Installation process uses standard, portable GNU AutoTools • At run-time • Library “tunes” using heuristic models • Models analyze user’s matrix & benchmark data to choose optimized data structure and code • Non-trivial tuning cost: up to ~40 mat-vecs • Library limits the time it spends tuning based on estimated workload • provided by user or inferred by library • User may reduce cost by save tuning results for application on future runs with same or similar matrix
Optimizations in the Initial OSKI Release • Fully automatic heuristics for • Sparse matrix-vector multiply • Register-level blocking • Register-level blocking + symmetry + multiple vectors • Cache-level blocking • Sparse triangular solve with register-level blocking and “switch-to-dense” optimization • Sparse ATA*x with register-level blocking • User may select other optimizations manually • Diagonal storage optimizations, reordering, splitting; tiled matrix powers kernel (Ak*x) • All available in dynamic libraries • Accessible via high-level embedded script language • “Plug-in” extensibility • Very advanced users may write their own heuristics, create new data structures/code variants and dynamically add them to the system
Example: Combining Optimizations • Register blocking, symmetry, multiple (k) vectors • Three low-level tuning parameters: r, c, v X k v * r c += Y A
Example: Combining Optimizations • Register blocking, symmetry, and multiple vectors [Ben Lee @ UCB] • Symmetric, blocked, 1 vector • Up to 2.6x over nonsymmetric, blocked, 1 vector • Symmetric, blocked, k vectors • Up to 2.1x over nonsymmetric, blocked, k vecs. • Up to 7.3x over nonsymmetric, nonblocked, 1, vector • Symmetric Storage: 64.7% savings
Current Work • Public software release • Impact on library designs: Sparse BLAS, Trilinos, PETSc, … • Integration in large-scale applications • DOE: Accelerator design; plasma physics • Geophysical simulation based on Block Lanczos (ATA*X; LBL) • Systematic heuristics for data structure selection? • Evaluation of emerging architectures • Revisiting vector micros • Other sparse kernels • Matrix triple products, Ak*x • Parallelism • Sparse benchmarks (with UTK) [Gahvari & Hoemmen] • Automatic tuning of MPI collective ops [Nishtala, et al.]
Review of Tuning by Illustration (Extra Slides)
Splitting for Variable Blocks and Diagonals • Decompose A = A1 + A2 + … At • Detect “canonical” structures (sampling) • Split • Tune each Ai • Improve performance and save storage • New data structures • Unaligned block CSR • Relax alignment in rows & columns • Row-segmented diagonals
Example: Variable Block Row (Matrix #12) 2.1x over CSR 1.8x over RB
Example: Row-Segmented Diagonals 2x over CSR
Raefsky4 (structural problem) + SuperLU + colmmd N=19779, nnz=12.6 M Dense trailing triangle: dim=2268, 20% of total nz Can be as high as 90+%! 1.8x over CSR Example: Sparse Triangular Factor
“axpy” dot product Cache Optimizations for AAT*x • Cache-level: Interleave multiplication by A, AT • Register-level: aiT to be r´c block row, or diag row • Algorithmic-level transformations for A2*x, A3*x, …
Summary • Automated block size selection • Empirical modeling and search • Register blocking for SpMV, triangular solve, ATA*x • Not fully automated • Given a matrix, select splittings and transformations • Lots of combinatorial problems • TSP reordering to create dense blocks (Pinar ’97; Moon, et al. ’04)
A Sparse Matrix You Encounter Every Day Who am I? I am a Big Repository Of useful And useless Facts alike. Who am I? (Hint: Not your e-mail inbox.)
Problem Context • Sparse kernels abound • Models of buildings, cars, bridges, economies, … • Google PageRank algorithm • Historical trends • Sparse matrix-vector multiply (SpMV): 10% of peak • 2x faster with “hand-tuning” • Tuning becoming more difficult over time • Promise of automatic tuning: PHiPAC/ATLAS, FFTW, … • Challenges to high-performance • Not dense linear algebra! • Complex data structures: indirect, irregular memory access • Performance depends strongly on run-time inputs
Key Questions, Ideas, Conclusions • How to tune basic sparse kernels automatically? • Empirical modeling and search • Up to 4x speedups for SpMV • 1.8x for triangular solve • 4x for ATA*x; 2x for A2*x • 7x for multiple vectors • What are the fundamental limits on performance? • Kernel-, machine-, and matrix-specific upper bounds • Achieve 75% or more for SpMV, limiting low-level tuning • Consequences for architecture? • General techniques for empirical search-based tuning? • Statistical models of performance
Road Map • Sparse matrix-vector multiply (SpMV) in a nutshell • Historical trends and the need for search • Automatic tuning techniques • Upper bounds on performance • Statistical models of performance
Compressed Sparse Row (CSR) Storage Matrix-vector multiply kernel: y(i) y(i) + A(i,j)*x(j) Matrix-vector multiply kernel: y(i) y(i) + A(i,j)*x(j) for each row i for k=ptr[i] to ptr[i+1] do y[i] = y[i] + val[k]*x[ind[k]] Matrix-vector multiply kernel: y(i) y(i) + A(i,j)*x(j) for each row i for k=ptr[i] to ptr[i+1] do y[i] = y[i] + val[k]*x[ind[k]]
Road Map • Sparse matrix-vector multiply (SpMV) in a nutshell • Historical trends and the need for search • Automatic tuning techniques • Upper bounds on performance • Statistical models of performance
Historical Trends in SpMV Performance • The Data • Uniprocessor SpMV performance since 1987 • “Untuned” and “Tuned” implementations • Cache-based superscalar micros; some vectors • LINPACK
Example: The Difficulty of Tuning • n = 21216 • nnz = 1.5 M • kernel: SpMV • Source: NASA structural analysis problem
Still More Surprises • More complicated non-zero structure in general
Still More Surprises • More complicated non-zero structure in general • Example: 3x3 blocking • Logical grid of 3x3 cells
Historical Trends: Mixed News • Observations • Good news: Moore’s law like behavior • Bad news: “Untuned” is 10% peak or less, worsening • Good news: “Tuned” roughly 2x better today, and improving • Bad news: Tuning is complex • (Not really news: SpMV is not LINPACK) • Questions • Application: Automatic tuning? • Architect: What machines are good for SpMV?
Road Map • Sparse matrix-vector multiply (SpMV) in a nutshell • Historical trends and the need for search • Automatic tuning techniques • SpMV [SC’02; IJHPCA ’04b] • Sparse triangular solve (SpTS) [ICS/POHLL ’02] • ATA*x [ICCS/WoPLA ’03] • Upper bounds on performance • Statistical models of performance