1 / 40

1. (conventional) phonon SC 2. Unconventional cuprates SC 3. Fe-based SC

Quest for Higher Tc or RTS. 3 possible routes:. 1. (conventional) phonon SC 2. Unconventional cuprates SC 3. Fe-based SC. Under extreme conditions:. 1. H 3 S under Extremely high pressures 2. YBCO under pulsed Laser pumping 3. Monolayer FeSe on an STO substrate.

Télécharger la présentation

1. (conventional) phonon SC 2. Unconventional cuprates SC 3. Fe-based SC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Quest for Higher Tc or RTS 3 possible routes: 1. (conventional) phonon SC 2. Unconventional cuprates SC 3. Fe-based SC Under extreme conditions: 1. H3S under Extremely high pressures 2. YBCO under pulsed Laser pumping 3. Monolayer FeSe on an STO substrate

  2. Sulfur Hydride @200 GPa : Phonon-SC (?) A.P. Drozdov, M.I. Eremets, I.A. Troyan, arXiv:1412.0460. A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontv & S.I. Shylin, Nature 525, 73 (2015). (Max Planck, Mainz) Tc = 203 K Im3m: H3S (?) Theoretical prediction: “P-induced metallization of dense (H2S)2H2 with high-Tc superconductivity” D. Duan et al., Sci. Reports 4, 06968 (2014). (Jilin Univ., Changchun)

  3. S atoms form a bcc sublattice. D. Duan et al., Sci. Reports 4, 06968 (2014). arXiv: 1509.03156 Structural analysis cannot distinguish between R3m and Im-3m.

  4. Rules of Matthias for Discovering New Superconductors #1: Findcubic crystals, high symmetry is best. #2: Find d-electron metals and/or metals with the average number of valence electrons, preferably odd numbers 3, 5, and 7,peaks in DOSare good. #3: Stay away frommagnetism, exclude metals showing or in close vicinity of magnetism. #4: Stay away fromoxygen and insulators, exclude metals near a metal-insulator transition such as oxide materials. #5: Stay away from theorists

  5. A15 Superconductors Tc (K) Liq. N2 Liq. H2 1973 Tc = 23 K Liq. He year

  6. Strong electron-phonon interaction in A15 Strong phonon scattering at elevated T’s  Very short mean free path, l~a(orkFl≤2p) Resistivity saturation Cu

  7. BCS Tc Limit/Tc Ceiling ? Tc (K) Liq. N2 BCS limit ? Liq. H2 1973 Tc= 23 K Liq. He year

  8. 200 History of Phonon High-Tc Tc(K) 100 ~ 30 K MgB2 39 K C60 BaKBiO3 Nb3Ge 23 K 2014 2001 1988, 1991 1973 0 1970 1980 1990 2000 2010 year

  9. Tc bound (ceiling) of “phonon” SC (BCS-Migdal) kBTc ~ ħW0e-1/l (l= N(EF) <I 2> / MW02) kBTc≪ħW0≪EF For very largeW0and moderatel, no Tcceiling as long asħW0≪EF “Metallic Hydrogen: A High-Temperature Superconductor?” N.W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).

  10. Tc bound (ceiling) of “phonon” SC Migdal-Eliashberg (McMillan-Allen-Dynes) ħ<w> kBTc Weak to moderate el-ph coupling: kBTc ~ ħW0e-1/l For very largeW0and moderatel, no Tcceiling as long asħW0≪EF Migdal Strong el-ph coupling: For largel; Tc ~l1/2 No Tc ceiling as long as a lattice instability can be avoided.

  11. Doped Bismuthate (BaBiO3) O Strong electron-phonon coupling Strong electron-phonon coupling Bi Ba Superconductivity (Tc max~ 12, 30 K) is unstable against CDW formation. L.F. Mattheiss et al., Phys. Rev. B 37, 3745 (1988). A.W. Sleight et al., Solid State Commun. 17, 27 (1975). R.J. Cava et al., Nature 332, 814 (1988).

  12. Parent Insulator BaBiO3 3D-CDW Bi5+ Bi3+ Superconductor CDW Insulator Breathing-mode distortions T.M. Rice & L. Sneddon, Phys. Rev. Lett. 47, 689 (1981). S. Tajima, SU et al., Phys. Rev. B 32, 6302 (1985). CDW gap S. Uchida, K. Kitazawa, S. Tanaka, Phase Transitions 8: 95-128 (1987).

  13. IR & Raman phonons in BaBiO3 IR-active Raman-active BaBiO3 \\ breathing mode BaBiO3

  14. Resonant Raman scattering from the breathing-mode phonon in BaBiO3 breathing mode CDW gap 2-phonon tuning incident light energy l = 5145 Å 3-phonon 4-phonon

  15. Strong covalent bond and strong electron-phonon coupling in BaBiO3 Extremely large deformation potential for breathing-mode lattice distortions s-bonding Bi6s-O2pbandsspread over ~ 16 eV breathing mode L.F. Mattheiss & D.R. Hamann, Phys. Rev. B 28, 4227 (1983).

  16. Relativistic Effect on Atomic Energy Levels P3/2 P3/2 S1/2 s, p P1/2 P1/2 j = l + s S1/2 “non-relativistic” “spin-orbitinteraction” “mass-correction” Hso = (Z/137)2l·s m = m0/(1 – v2/c2)1/2

  17. Charge Disproportionation (Valence Skipper) “ionic picture” (too simplified) 2Bi4+(6s)1 Bi3+(6s)2 + Bi5+(6s)0 Ba2+Bi4+O2-3 6p 6p 6p relativistic effect:“mass-correction” “closed shell” ~ (Z/137)2 Ry 6s 6s 6s Bi: Z = 83 “closed shell” 5s, 5p, 5d, …

  18. Strong Covalent Bond in BaBiO3 BaBiO3 Antibonding BaBi1-xPbxO3 Doping CDW Gap Ba1-xKxBiO3 O2ps Bi6s:Bi4+ Bonding Bi4+(6s)1 Bi3+(6s)2 + Bi5+(6s)0

  19. Strong Covalent Bond in MgB2 sp2-Antibonding (s *) B2px, 2py B2px, 2py Nonbonding Mg B2s B2s Charge Transfer s -band sp2-Bonding (s)

  20. Superconductivity next to CDW SC often emerges from CDW phase, but Tc is not high compared to SC competing with AF (SDW) phase:i) phonon vs electronic pairing ? Ii) conventional s-wave vs unconventional pairs ?Iii) charge (e)vs spin (sx, sy, sz); 1:3 (Aoki)? E. Morosan, H.W. Zandbergen, N.P. Ong, R.J. Cava et al., Nature Phys. 2, 544 (2006). K.E. Wagner, R.J. Cava et al., Phys. Rev. B 78, 104520 (2008).

  21. Superconductivity next to CDW Hole-doped cuprate two-leg ladders Sr14-xCaxCu24O41 @ P Tc max~ 12 K CuxTiSe2 12 8 Tc(K) No spin order 4 2 4 6 8 0 P (GPa) 3cL K.M. Kojima, N. Motoyama, H. Eisaki, SU, J. Electron Spectroscopy and Related Phenomena 117-118, 237 (2001). x ~ 11 (n=1/3) N. Motoyama, SU et al., Europhys. Lett. 58, 758 (2002).

  22. Charge and SC orders are intertwined. Tc max~ 100 K 400 300 PG T* TemperatureT (K) 200 TSCon TCDWon 100 Tc FL AF d-SC 0 0.3 0 0.1 0.2 Hole dopingp QCP ?

  23. Optimized Phonon Mechanism in MgB2 Mg B 1) Strong sp2bonding: Layer structure 2) Light element: Combined with the strongsp2bond makesW0very high. 3) A simple metal: ħW0≪EF(Migdal) 4)Strong electron-phonon coupling without instability: Cylindrical FS (s-FS) avoids a structural instability. These seem to conspire to optimize the phonon-mediated superconductivity in MgB2. W. E. Pickett, Physica C 468, 126 (2007).

  24. “Covalent Bond Driven Metallic” Tc ~ 40 K ħW0 ~ 80 meV l ~ 1 MgB2: Mg2+(B2)2- s-band Bsp2hybridization s-bondingband J.M. An and W. E. Pickett, Phys. Rev. Lett. 86 (2001). s-FS

  25. Doped Fullerides (C60)-Cs3C60 Basically isotropic s-wave pairing, but the highest Tc is realized in the vicinity of AF phase. A15-Cs3C60 P =7 kbar P A.Y. Ganin et al., Nature Mater. 7, 367 (2008).

  26. 200 History of Phonon High-Tc 203 K H3S@200 GPa Tc(K) 100 30 K MgB2 39 K BaKBiO3 Nb3Ge 23 K 2014-15 2001 1988 1973 0 1970 1980 1990 2000 2010 year

  27. Tc = 203 K Superconductivity in Sulfur Hydride (H3S) @ P=200 GPa Resistance Magnetization/ Meissner A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontv & S.I. Shylin, Nature 525, 73 (2015).

  28. Further Optimization Phonon Mechanism in H3S ? 1) Strong covalent bonding (H1s-S3p) 2) Light element: Combined with the strongbond makesW0very high. 3) A simple metal: ħW0≪EF(Migdal)?? 4) Strong electron-phonon coupling without instability: Non-nestingFS (s-FS) avoids a structural instability. Isotropic HTS suitable for SC power application N. Bernstein, I.I. Mazin et al., Phys. Rev. B 91, 060511 (2015).

  29. Why does theory successfully predict high Tc in H3S? W. Sano, T. Koretsune, T. Tadano, R. Akashi, R. Arita, arXiv: 1512.07365. ● Quantum nature of H atom - zero-point motion -anharmonic vibrations ● Validity of Migdal theorem - van Hove singularity near EF The effective Fermi energy is small; ‘EF’ ~ ħW0 m* = m / [1 + m ln (EF/ħW0)] Y. Quan, W.E. Pickett, arXiv: 1508.04491. L.P. Gor’kov, V.Z. Kresin, arXiv: 1511.06926.

  30. Quantum Hydrogen Bond in R3m I. Errea et al., Nature 532, 81 (2016). d1: Covalent bond d2: Hydrogen bond

  31. Revival of Matthias’ Rules (?) #1: Findcubic crystals, high symmetry is best. #2: Findd-electron metals and/or metals with the average number of valence electrons, preferably odd numbers 3, 5, and 7, peaks in DOSare good. #3: Stay away frommagnetism, exclude metals showing or in close vicinity of magnetism. #4: Stay away fromoxygen and insulators, exclude metals near a metal-insulator transition such as oxide materials. #5: Stay away from theorists

  32. Why does theory successfully predict high Tc in H3S? arXiv: 1512.07365

  33. No Tc bound for “phonon” SC (?) McMillan-Allen-Dynes (assumingm*= 0.10-0.15) A. Bianconi: “SC above the lowest Earth temperature: 184 K (-89.2℃)” 3. H3S @ 200 GPa, Tc ~ 200 K kBTc =ħW0e-1/l W0 =(K/ M)1/2 ~ 200 meV, <w> ~ 1300 K, l ~ 2.2 2. MgB2 @ 0 Pa, Tc ~ 40 K kBTc =ħW0e-1/l W0 =(K/ M)1/2 ~ 80 meV, <w> ~ 600 K, l ~ 1 1. doped BaBiO3 , Tc ~ 30 K Unstable against CDW

  34. No Tc bound for “phonon” SC (?) McMillan-Allen-Dynes (assumingm*= 0.10-0.15) 4. H @ 2000 GPa, Tc ~ 750 K kBTc =ħW0e-1/l W0 =(K/ M)1/2 ~ 400 meV, <w> ~ 2300 K, l ~ 3 J.M. McMahon & D.M. Ceperley, Phys. Rev. B 84, 144515 (2011). 3. H3S @ 200 GPa, Tc ~ 200 K kBTc =ħW0e-1/l W0 =(K/ M)1/2 ~ 200 meV, <w> ~ 1300 K, l ~ 2.2 2. MgB2 @ 0 Pa, Tc ~ 40 K kBTc =ħW0e-1/l W0 =(K/ M)1/2 ~ 80 meV, <w> ~ 600 K, l ~ 1 1. doped BaBiO3 , Tc ~ 30 K Unstable against CDW

  35. Even Higher Tc in Atomic Metallic H @2TPa Phys. Rev. B 84, 144515 (2011). “Metallic Hydrogen: A High-Temperature Superconductor?” N.W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968). Tcmax ~ 750 K !! @ 2000 GPa ħW0 ~ 400 - 500 meV <w> = 2300 K l ~ 3

  36. Supplementary Informations

  37. Valence Skippers La

  38. Charge Disproportionation (Valence Skipper) 2Tl2+(6s)1 Tl1+(6s)2 + Tl3+(6s)0 2Pb3+(6s)1 Pb2+(6s)2 + Pb4+(6s)0 6p 6p 6p relativistic effect:“mass-correction” “closed shell” ~ (Z/137)2 Ry 6s 6s 6s “closed shell” 5s, 5p, 5d, …

  39. Relativistic Element Hg Why is Hg a ‘liquid’ metal at RT ? La

  40. Relativistic effect in Hg: Weak bond due to “closed shell” electronic structure Hg1+(6s)1 Hg0 (6s)2 + Hg2+(6s)0 6p 6p 6p Hg relativistic effect:“mass-correction” “closed shell” ~ (Z/137)2 Ry 6s 6s 6s “closed shell” 5s, 5p, 5d, …

More Related