250 likes | 391 Vues
The case for High energy neutrino astronomy. Eli Waxman Weizmann Institute, ISRAEL. High energy n ’ s: A new window. MeV n detectors: Solar & SN1987A n ’ s Stellar physics (Sun ’ s core, SNe core collapse) n physics >0.1 TeV n detectors: Extend n horizon to extra-Galactic scale
E N D
The case forHigh energy neutrino astronomy Eli Waxman Weizmann Institute, ISRAEL
High energy n’s: A new window MeV n detectors: • Solar & SN1987A n’s • Stellar physics (Sun’s core, SNe core collapse) • n physics >0.1 TeV n detectors: • Extendn horizon to extra-Galactic scale MeV n detectors limited to local (Galactic) sources [10kt @ 1MeV1Gton @ TeV , sTeV/sMeV~106] • Study “Cosmic accelerators” [pg, pp p’sn’s] • n physics
v The 1020eV challenge R B /G v G2 G2 2R l =R/G (dtRF=R/Gc) [Waxman 95, 04, Norman et al. 95] • AGN (Steady): G~ 101 L>1014 LSun few brightest • ~1/100 Gpc3 d >> 100Mpc ?? AGN flares • GRB (transient): G~ 102.5 L>1017 LSunLg~ 1018LSun [Blandford 76; Lovelace 76] [Farrar & Gruzinov 08] [Waxman 95, Vietri 95, Milgrom & Usov 95]
Source physics • GRB: 1020LSun, MBH~1Msun, M~1Msun/s, G~102.5 • AGN: 1014 LSun, MBH~109Msun, M~1Msun/yr, G~101 • MQ: 105 LSun, MBH~1Msun, M~10-8Msun/yr, G~100.5 Jet acceleration Energy extraction Particle acceleration Jet content (kinetic/Poynting) Radiation mechanisms
Clues: CR phenomenology Galactic heavy (“hypernovae” Z~10 to 1019eV) log [dJ/dE] Flattening, Near isotropy, Heavy light (?) E-2.7 Protons E-3 X-Galactic, ?Light Heavy Nuclei 1 1010 106 Cosmic-ray E [GeV] [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00]
Constraints: Flux & Spectrum Particle acc.; SFR , AGN, GRB [Waxman 1995; Bahcall & Waxman 03] [Berezinsky et al. 08] DEsys/E~20% [Kashti & Waxman 08]
Clues: Anisotropy Biased (rsource~rgal for rgal>rgal ) CR intensity map (rsource~rgal) Galaxy density integrated to 75Mpc • Cross-correlation signal: Anisotropy @ 98% CL; Consistent with LSS Few fold increase >99% CL, but not 99.9% CL • Correlation with AGN ? VCV catalogue: 99% CL Swift catalogue: 84% (98% a posteriori) CL low-luminosity AGN? Simply trace LSS! [Kashti & Waxman 08] [Waxman, Fisher & Piran 1997] [Auger collaboration 07] [George et al. 08]
>1019eV cosmic rays: Clue summary • Spectrum (+Xmax) likely X-Galactic protons • Anisotropy + Spectrum likely “Conventional” sources • L constraint likely Transient sources • Ep2dN/dEp~ 0.7x1044 erg/Mpc3 yr • What next for Auger? Identify (narrow spectrum) point source(s)?
HE n Astronomy • p + g N +p p0 2g ; p+ e+ + ne + nm + nm Identify UHECR sources Study BH accretion/acceleration physics • E2dn/dE=1044erg/Mpc3yr + tgp<1: • If X-G p’s: Identify primaries, determine f(z) [Waxman & Bahcall 99; Bahcall & Waxman 01]
AGN n models?? BBR05
Experiments • Optical Cerenkov - South Pole Amanda: 660 OM, 0.05 km3 IceCube: +660/yr OM (05/06, 06/07) 4800 OM=1 km3s - Mediterranean Antares: 10 lines (Nov 07), 750 OM 0.05 km3 Nestor: (?) 0.1 km3 km3Net: R&D 1 km3 • UHE: Radio Air shower • Aura, Ariana (in Ice) Auger (nt) • ANITA (Balloon) EUSO (?) • LOFAR
Generic GRB fireball n’s • If: Baryonic jet, internal shocks (Weak dependence on model parameters) • Background free: [Waxman & Bahcall 97, 99; Rachen & Meszaros 98; Alvarez-Muniz & F. Halzen 99; Guetta et al. 04; Hooper, Alvarez-Muniz, Halzen & E. Reuveni 04]
The current limit [Achterberg et al. 07 (The IceCube collaboration)]
n- physics & astro-physics [Waxman & Bahcall 97] • p decay ne:nm:nt = 1:2:0 (Osc.) ne:nm:nt = 1:1:1 t appearance experiment • GRBs: n-g timing (10s over Hubble distance) LI to 1:1016; WEP to 1:106 • EM energy loss of m’s (and p’s) • ne:nm:nt = 1:1:1 (E>E0) 1:2:2 • GRBs: E0~1015eV • Combining E<E0, E>E0 flavor measurements may constrain CPV [SinQ13 Cosd] [Waxman & Bahcall 97; Amelino-Camelia,et al.98; Coleman &.Glashow 99; Jacob & Piran 07] [Rachen & Meszaros 98; Kashti & Waxman 05] [Blum, Nir & Waxman 05]
Outlook • Particle+Astro-phys. Open Q’s - >1011GeV particles: primaries, f(z),origin & acceleration - Physics of relativistic sources (GRBs, AGN, MQ…) Energy extraction from BH accretion Relativistic plasma physics - “Conventional” astrophysics (starburst ISM) - nm ntt appearance gn Timing LI to 1:1016; WEP to 1:106 Flavor ratios CPV • New HE g, CR and n detectors >103 km2 hybrid >1019eV CR detectors ~1 km3 (=1Gton) 1-1000TeV n detectors >>1 km3[radio,…] >>1000TeV n detectors 10MeV—10GeV g-ray satellite (AGILE, GLAST) >0.1TeV (ground based) g-ray telescopes (Milagro, HESS, MAGIC, VERITAS) Identified point sources Diffuse
Composition clues HiRes 2005
Electrons MeV g’s: tgg<1: e- (g) spectrum: e- (g)energy production Protons Acceleration/expansion: Synchrotron losses: Proton spectrum: p energy production: GRB proton/electron acceleration [Waxman 95, 04]
The GRB “GZK sphere” g p • LSS filaments: D~1Mpc, fV~0.1, n~10-6cm-3, T~0.1keV eB=(B2/8p)/nT~0.01 (B~0.01mG), lB~10kpc • Prediction: D lB [Waxman 95; Miralda-Escude & Waxman 96, Waxman 04]
GRB Model Predictions [Miralda-Escude & Waxman 96]
& IceCube AMANDA
The Mediterranean effort • ANTARES (NESTOR, NEMO) KM3NeT
M82 M81 Mark Westmoquette (University College London), Jay Gallagher (University of Wisconsin-Madison), Linda Smith (University College London), WIYN//NSF, NASA/ESA Robert Gendler
A lower bound: Star bursts • Star burst galaxies: - Star Formation Rate ~103Msun/yr >> 1 Msun/yr “normal” (MW) - Density ~103/cc >> 1/cc “normal” - B ~1 mG >> 1mG “normal” • Most stars formed in (z>1.5) star bursts • High density + B: CR e-’s lose all energy to synchrotron radiation CR p’s lose all energy to p production [Quataert et al. 06] [Loeb & Waxman 06]
Synchrotron radio Fn calibration [Loeb & Waxman 06]