1 / 36

Characterization of Actinide Alloys as Nuclear Transmutation Fuels

Characterization of Actinide Alloys as Nuclear Transmutation Fuels. J. Rory Kennedy OECD/NEA Eighth Information Exchange Meeting On Partitioning and Transmutation (IEMPT-8) November 10, 2004. Acknowledgements.

noe
Télécharger la présentation

Characterization of Actinide Alloys as Nuclear Transmutation Fuels

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Characterization of Actinide Alloys as Nuclear Transmutation Fuels J. Rory Kennedy OECD/NEA Eighth Information Exchange Meeting On Partitioning and Transmutation (IEMPT-8) November 10, 2004

  2. Acknowledgements Alloy Fabrication: Mr. Jim Stuart, Mr. Gavin Knighton, Ms. Kaylyne Weatherstone, Mr. Brian Forsmann, Mr. James Sommers Sample Preparation: Mr. Tom DiSanto, Ms. Maryanne Noy, Mr. Brian Forsmann Phase (XRD) measurements: Dr. Steven Frank Microstructure (SEM): Dr. Dennis Keiser Thermal Analysis: Ms. Jennifer Sloppy, Ms. Jacklyn Gates, Ms. Allison Bourke Thermal Diffusivity: Mr. Andrew Maddison, Mr. Samuel Bays, Dr. Marsha Lambregts Chemical Analysis: Dr. Jeffrey Giglio, Mr. Dan Cummings, Mr. Jeffrey Berg, Ms. Pam Crane, Mr. Michael Mitchlik, Material transfer: Mr. Scott Wilde, Mr. Ron Briggs, Mr. Bevin Brush, Health Physics personnel, MC&A personnel, FMF personnel Characterization Results from AFC1-b,d & f Metal Alloy Fuel Campaigns

  3. Outline • ANL-W Characterization Capabilities • Fuel Fabrication • Am Retention • As-cast Phase Identification • As-cast Microstructure • Thermal Analysis • Differential Scanning Calorimetry (DSC, temps, Cp) • Thermal Mechanical Analysis (TMA, density)) • Thermal Diffusivity (Laser Flash Method, LFD) • Thermal Conductivity • Fuel-Cladding-Chemical-Interaction (FCCI)

  4. ANL-W Fabrication Capabilities • Radioactive isotopes or non-radioactive isotopes • Alloys • Ceramics (oxides, nitrides, carbides, composites, etc.) • Compounds and molecular species

  5. ANL-W Characterization Capabilities • Phase Identification • XRD and elevated variable temperature XRD • Microstructure • SEM, EDS, WDS and TEM • Chemical Analysis • ICP-MS, ICP-AES, gamma spec, LECO, etc • Density • immersion • Thermal Analysis • DSC, TMA, TGA, LFD • Fuel-Cladding-Chemical-Interaction

  6. AFCI Metal Alloy Fuels Under Study • AFC1-B,D Non-fertile (4.0mm diameter; ~83% 239Pu) • 40Pu-60Zr • 60Pu-40Zr • 50Pu-10Np-40Zr • 48Pu-12Am-40Zr • 40Pu-10Am-10Np-40Zr • AFC1-F Low fertile (4.0mm diameter) • 35U-35Pu-30Zr (DU: base composition) • 35U-29Pu-4Am-2Np-30Zr (78% 235U) • 30U-25Pu-3Am-2Np-40Zr (93% 235U) • 40U-34Pu-4Am-2Np-20Zr (33% 235U) • 35U-28Pu-7Am-30Zr (93% 235U) • FUTURIX-FTA (4.9mm diameter) • 35U-29Pu-4Am-2Np-30Zr (78% 235U) • 48Pu-12Am-40Zr

  7. Americium Retention Element Vapor Pressures Am vapor pressure 4-6 orders of magnitude higher than Pu Characterization Results from AFC1-b,d & f Metal Alloy Fuel Campaigns

  8. Zr rich -(Pu-Zr) Carbon Pu-rich -(Pu-Zr) -Zr Fe Y2O3 Powder Metallurgical Approach • Developed as low temperature fabrication route to prevent Am loss. Hot pressing. • Inhomogeneous microstructure after processing at ~ 800°C • High impurity content • Complex process - impractical remote process scale-up • Powder handling • Material loss • Time Characterization Results from AFC1-b,d & f Metal Alloy Fuel Campaigns

  9. Characterization Results from AFC1-b,d & f Metal Alloy Fuel Campaigns

  10. Americium Retention Characterization Results from AFC1-b,d & f Metal Alloy Fuel Campaigns

  11. AFC1 Metal Alloy Fuels As-Cast Room Temp Phase Results (XRD) 40Pu-60Zr -Zr (hcp) 60Pu-40Zr -Pu (fcc) 48Pu-12Am-40Zr -Pu (fcc) 50Pu-10Np-40Zr -Pu (fcc) + -MZr2 (-UZr2 hex) 40Pu-10Am-10Np-40Zr -Pu (fcc) + -MZr2 (-UZr2 hex) 30U-25Pu-3Am-2Np-40Zr -MZr2 (-UZr2 hex) 35U-29Pu-4Am-2Np-30Zr -MZr2 (-UZr2 hex) + ζ-U (? minor) 35U-28Pu-7Am-30Zr -MZr2 (-UZr2 hex) + ζ-U (? minor) 40U-34Pu-4Am-2Np-20Zr-MZr2 (-UZr2 hex) + ζ-U(?)

  12. AFC1 Metal Alloy Fuels As-Cast Room Temp Phase Results (XRD) Pu-40Zr Pu-12Am-40Zr

  13. AFC1 Metal Alloy Fuels As-Cast Microstructure Results (SEM) Pu-12Am-40Zr Pu-40Zr

  14. AFC1 Metal Alloy Fuels As-Cast Results (DSC, TMA) Pu-40Zr Pu-12Am-40Zr

  15. AFC1 Metal Alloy Fuels As-Cast Room Temp Phase Results (XRD) Pu-10Np-40Zr Pu-10Np-10Am-40Zr

  16. AFC1 Metal Alloy Fuels As-Cast Microstructure Results (SEM) Pu-10Np-10Am-40Zr Pu-10Np-40Zr

  17. DSC/DTA and TMA Heating Curves Pu-10Np-40Zr As-Cast Characterization Results from AFC1-b,d & f Metal Alloy Fuel Campaigns

  18. AFC-1F Metal Alloy Fuels XRD Study

  19. U-25Pu-3Am-2Np-40Zr (MH036) “30U-30Pu-40Zr” U-29Pu-4Am-2Np-30Zr (MI037) * “36U-34Pu-30Zr” U-34Pu-3Am-2Np-20Zr (MG034) “41U-39Pu-20Zr” U-28Pu-7Am-30Zr (MF032) “35U-35Pu-30Zr”

  20. SEM Micrographs of As-Cast 30U-25Pu-3Am-2Np-40Zr Alloys (MH036) • Even elemental distribution overall. • Some globule formation (oxide enriched). • Few pores. Characterization Results from AFC1-b,d & f Metal Alloy Fuel Campaigns

  21. SEM Micrographs of As-Cast 40U-34Pu-4Am-2Np-20Zr Alloys (MG040) • Multiphase • Globule formation (Zr enriched). Characterization Results from AFC1-b,d & f Metal Alloy Fuel Campaigns

  22. Differential Scanning Calorimetry of As-Cast 30U-25Pu-3Am-2Np-40Zr Alloy • Transition from -UZr2 to bcc over 565ºC - 600ºC range Characterization Results from AFC1-b,d & f Metal Alloy Fuel Campaigns

  23. Differential Scanning Calorimetry of As-Cast 40U-34Pu-4Am-2Np-20Zr Alloy • Transition from -UZr2 at 541ºC. • Transition to bcc at 592ºC. Characterization Results from AFC1-b,d & f Metal Alloy Fuel Campaigns

  24. Zr – 50U50Pu Vertical Section through U-Pu-Zr Phase Diagram

  25. Instantaneous Laser Pulse Front Face Radiative Heat Loss Back Face Temperature Rise Laser Flash Diffusivity Measurements Anter Laser Flash Diffusivity System Modified for glove-box operation Zero power and finite pulse width corrected Characterization Results from AFC1-b,d & f Metal Alloy Fuel Campaigns

  26. Thermal Conductivity (Clark & Taylor Correction) U-Zr values taken from Takahashi, Yamawaki, Yamamoto J. Nucl. Mater. 1988, 154, 141. Characterization Results from AFC1-b,d & f Metal Alloy Fuel Campaigns

  27. Thermal Diffusivity of Pu-12Am-40Zr Characterization Results from AFC1-b,d & f Metal Alloy Fuel Campaigns

  28. Thermal Diffusivity of U-29Pu-4Am-2Np-30Zr Characterization Results from AFC1-b,d & f Metal Alloy Fuel Campaigns

  29. Fuel-Cladding Chemical Interaction (fcci) steel steel Characterization Results from AFC1-b,d & f Metal Alloy Fuel Campaigns

  30. FUTURIX-FTA Metal Alloy Fuels FCCI 650ºC 7hrsU-29Pu-4Am-2Np-30Zr – AIM1 SS Diffusion Couple Fe BSE SE Ni Cr Zr

  31. FUTURIX-FTA Metal Alloy Fuels FCCI 650ºC 7hrsU-29Pu-4Am-2Np-30Zr – AIM1 SS Diffusion Couple Np BSE U O Pu Am

  32. FUTURIX-FTA Metal Alloy Fuels FCCI 650ºC 7hrsPu-12Am-40Zr – AIM1 SS Diffusion Couple BSE Pu O SE Am

  33. FUTURIX-FTA Metal Alloy Fuels FCCI 650ºC 7hrsPu-12Am-40Zr – AIM1 SS Diffusion Couple Fe SE BSE Zr Ni Cr

  34. FUTURIX-FTA Metal Alloy Fuels FCCI 650ºC 7hrsPu-12Am-40Zr – AIM1 SS Diffusion Couple BSE – Fe 600 m BSE – Fe 120 m BSE – Fe 1000 m

  35. AFCI Metal Alloy Fuels FCCI 650ºC 200hrsPu-10Am-10Np-40Zr – 422 SS Diffusion Couple 1100 m

  36. Summary • Successfully Arc-Cast Series of Non-fertile and Low-fertile Alloys Composed of Varying Amounts of U, Pu, Np, Am, Zr • Good Retention of Am from Fabrication Process • Continuing the Quantitative Characterization of the Fuels for Phase (XRD), Microstructure (SEM), Thermal Analysis (DSC, TMA, LFD), Thermal Conductivity, and FCCI • Initial PIE looks good

More Related