610 likes | 735 Vues
This article explores the limitations and interests related to animal models in neuroprotection research. It discusses false positive, true negative, and false negative studies, emphasizing lessons learned from failed clinical trials in adult stroke and ALS contexts. The analysis highlights the impact of factors such as drug design, study design validity, and confounding variables. The focus is on identifying the pitfalls of animal models and their predictive capabilities regarding human outcomes while suggesting improvements in experimental design to enhance translational research efficacy.
E N D
Modèles animaux : Intérêts et limites Pierre Gressens
Focus & plan • Neuroprotective strategies as an example • False positive studies : what should we learn from them ? • True negative studies : why are they important ? • False negative studies : what do they tell us ?
False positive studies • Adult stroke field : huge failure in clinical trials with drugs protective in animal models (except for tPA)
False positive studies • Adult stroke field : huge failure in clinical trials with drugs protective in animal models (except for tPA) • Pessimistic interpretation : animal models not predictive of humans
False positive studies • Adult stroke field : huge failure in clinical trials with drugs protective in animal models (except for tPA) • Pessimistic interpretation : animal models not predictive of humans • Scientific approach : why ?
False positive studies • Animal studies - “wrong” compound : PK, PD, BD, BBB, …, wrong target, …
False positive studies • Animal studies - “wrong” compound : PK, PD, BD, BBB, …, wrong target, …- “wrong” design : blinded, randomized, stats, controls (KOs, behavior)
False positive studies • Animal studies - “wrong” compound : PK, PD, BD, BBB, …, wrong target, …- “wrong” design : blinded, randomized, stats, controls (KOs, behavior)- confounding variables
False positive studies • Animal studies - “wrong” compound : PK, PD, BD, BBB, …, wrong target, …- “wrong” design : blinded, randomized, stats, controls (KOs, behavior)- confounding variables - T° - time of the day, season, … - sex - maternal stress, maternal care, maternal feeding, … - person performing model, tests, analyses, …
Temperature 4 3 3 2 Mean Global Pathology Score 1 0 32°C 37°C 38°C 39°C Control Post-HI Recovery Temperature Thoresen et al., unpublished data
Time of the day Bednarek & Gressens, unpublished data
Maternal stress Rangon et al., J Neurosci 2007
The ALS lesson SOD1 mutant = ALS model Riluzole protection (increased lifespan) Scott et al., ALS 2008
The ALS lesson SOD1 mutant = ALS model Riluzole protection (increased lifespan) 5429 mice Riluzole efficacy computer analysis Scott et al., ALS 2008
The ALS lesson SOD1 mutant = ALS model Riluzole protection (increased lifespan) 5429 mice Riluzole efficacy computer analysis confounding biological factors optimal study design Scott et al., ALS 2008
The ALS lesson SOD1 mutant = ALS model Riluzole protection (increased lifespan) optimal study design 8 « protective » drugs well-powered study 5429 mice Riluzole efficacy computer analysis confounding biological factors optimal study design Scott et al., ALS 2008
The ALS lesson SOD1 mutant = ALS model Riluzole protection (increased lifespan) optimal study design 8 « protective » drugs well-powered study 5429 mice Riluzole efficacy computer analysis confounding biological factors no effect on lifespan !!! optimal study design Scott et al., ALS 2008
The ALS lesson SOD1 mutant = ALS model Riluzole protection (increased lifespan) optimal study design 8 « protective » drugs well-powered study 5429 mice Riluzole efficacy computer analysis confounding biological factors no effect on lifespan !!! optimal study design ? previous studies = biased Scott et al., ALS 2008
False positive studies • Animal studies - “wrong” compound : PK, PD, BD, BBB, …, wrong target, …- “wrong” design : blinded, randomized, stats, confounding variables - healthy vs sick animals
Impact of systemic inflammation on neuroprotection Gressens et al., Eur J Pharm 2008 Gressens et al., unpublished
Impact of systemic inflammation on neuroprotection Gressens et al., Eur J Pharm 2008 Gressens et al., unpublished data
Impact of systemic inflammation on neuroprotection Gressens et al., Eur J Pharm 2008 Gressens et al., unpublished data
Impact of systemic inflammation on neuroprotection Gressens et al., Eur J Pharm 2008 Gressens et al., unpublished data
False positive studies • Animal studies - “wrong” compound : PK, PD, BD, BBB, …, wrong target, …- “wrong” design : blinded, randomized, confounding variables - healthy vs sick animals • Human clinical trials- too “stringent” outcome- death vs survival of impaired patients
The catch 22 0 Damage Death Neuroprotection Insult Protective effect on mortality?
True negative studies • allow to rule out potential pathways and targets
True negative studies • allow to rule out potential pathways and targets… if studies correctly performed ! • good rationale (hypothesis to test) • good design : - sufficient power !!!- multiple models- multiple species
NADPH oxidase • oxidative stress is deleterious for the brain • inhibition of NADPH oxidase = neuroprotective in adults • ? good target in neonates
NADPH oxidase: not a good target in neonates Doverhag et al., NBD 2008
NADPH oxidase: not a good target in neonates Doverhag et al., NBD 2008
False negative studies • what do they tell us ?
False negative studies • what do they tell us ? • different case scenarios …
Methodological biases • power calculation taking into account - variability of procedure - variability of outcome variable
Power (n=8/group)
Power p = 0.0764 (n=8/group)
Power p = 0.0764 (n=8/group) (n=16/group)
Power p = 0.0764 (n=8/group) p = 0.0088 (n=16/group)
Methodological biases • power calculation taking into account - variability of procedure - variability of outcome variable • appropriate outcome & readout, combined R/
4 3 2 Brain pathology score 1 0 Hypothermia + drug Cx Hipp Cer Bs.g Thal Haland et al., Pediat Res 1997
4 3 2 Brain pathology score 1 0 Hypothermia + drug • optimized HT • drug effect ? (complex paradigms & analyses or -) Cx Hipp Cer Bs.g Thal Haland et al., Pediat Res 1997
4 3 2 Brain pathology score 1 0 Hypothermia + drug • optimized HT • drug effect ? (complex paradigms & analyses or -) • « human efficacy » HT • effect of drug on a cooled brain Cx Hipp Cer Bs.g Thal Haland et al., Pediat Res 1997
Methodological biases • power calculation taking into account - variability of procedure - variability of outcome variable • appropriate outcome & readout, combined R/ • dose-response curve
Dose-response : U-shape curve Sokolowska et al., submitted
Methodological biases • power calculation taking into account - variability of procedure - variability of outcome variable • appropriate outcome & readout, combined R/ • dose-response curve • BD (BBB penetration, degradation, …), PK, species specificities
Administration schedule Gressens et al., unpublished data
Administration schedule Gressens et al., unpublished data
Mixed effects • pre-clinical drug testing ≠ search for targets
Mixed effects • pre-clinical drug testing ≠ search for targets • cell type : neurons vs microglia / astroglia => cell type-specific conditional KOs
Mixed effects • pre-clinical drug testing ≠ search for targets • cell type : neurons vs microglia / astroglia => cell type-specific conditional KOs • timing issue : early M1 microglia vs late M2 microglia => time-course of lesions
M1 & M2 microglia Kigerl et al., J Neurosci 2009