1 / 40

The Solid Phase

The Solid Phase. Inorganic components : soil minerals Organic components : soil organic matter Inorganic components : Primary minerals: The sand and silt fractions consist largely of primary minerals.

pallaton
Télécharger la présentation

The Solid Phase

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Solid Phase • Inorganic components: soil minerals • Organic components: soil organic matter • Inorganic components: • Primary minerals: • The sand and silt fractions consist largely of primary minerals. • Primary minerals are formed at elevated temperatures and inherited unchanged from igneous and metamorphic rocks, sometimes through a sedimentary cycle. • The most abundant primary minerals in soils: quartz(SiO2) and feldspars (MAlSi3O8) • Micas, pyroxenes, amphiboles, and olivine are in smaller quantities.

  2. The Solid Phase(續) • Second minerals: • Minerals of the clay fraction of soils are largely secondary. • Secondary minerals are formed by low temperature reaction and either inherited from sedimentary rocks or formed directly by weathering. • Common secondary minerals in soils include the carbonate, the sulfur minerals, and the layer silicates, the various oxides.

  3. Crystal chemistry of silicates • Internal bonding in silicates is predominantly ionic. As a result, forces are undirected and ionic size plays an important part in determining crystal structure.

  4. O O O Si Si Si O O O O O O O O O O Si Si O O O • 鏈狀矽酸鹽 (chain structures)- Inosilicates 單鏈 (single chain) e.g.輝石類 (Pyroxenes) e.g.MgSiO3 (SiO3)n 雙鏈 (Double Chains)- e.g.角閃石類 (amphiboles)

  5. O O O O Si Si O O O O Si Si O O Si Si Ring 環狀矽酸鹽 (Cyclic structures)- Cyclosilicates e.g.電氣石 (Tourmaline) 綠寶石 (Beryl) Be3Al2(SiO3)6

  6. Layer silicates 層狀矽酸鹽(Sheet structure)- Phyllosilicates (a)為鏈狀構造之 two-dimensional extension (b)雲母類、綠泥石 (砂粒及坋粒部) 、黏土礦物 (黏粒部) 。 (c)基本架構 (unit structure) Tetrahedral layer (四面體層) :由矽四面體所構成之層狀構造。 Octahedral layer (八面體層) :由鋁八面體 (Aluminum Octahedron) 所構成之層狀構造。 Dioctahedral:鋁原子只佔有2/3之 Octahedral position Trioctahedral:所有之 Octahedral position 均被佔滿。 [Al2(OH)6]n [Mg3(OH)6]n

  7. 四面體層 八面體層 unit cell 四面體層 K+ K+ (d)層狀之矽酸鹽通常由四面體層和八面體層延著垂直c之方向堆積而成。 (e) e.g.雲母類 白雲母(muscovite) 黑雲母(biotite)

  8. 同位置換 (Isomorphous substitution) 在結晶格子中以 一元素取代另一元素而不改變結晶構造,通常大小相近之離子 (即配位數相同) 可互相取代,但電荷並不一定相同,而取代所造成之電荷不平衡可由其他陽離子來中和。 e.g. Al3+(Ⅳ) 取代 Si4+(Ⅳ) Mg2+(Ⅵ) 取代 Fe3+(Ⅵ) 或者 Al3+(Ⅵ)

  9. Si O O Si Si Si O O O O O Si Si 四面體累積架構矽酸鹽 (Framework Structures) 3-dimensional Tectosilicates 此類的矽酸鹽礦物最重要為 Silica (矽酸) 和 feldspars (長石類) 矽酸最重要為石英 (quartz)

  10. 黏粒部之礦物 主要為層狀的矽酸鹽,可由初級之層狀的矽酸鹽 (雲母類和綠泥石類) 稍微改變而來。或由土壤之生成過程中而生成之次級層狀矽酸鹽 高嶺石類 (Kaolins) 水化雲母類 (hydrous micas):包括 illite (伊來石) 和 Vermiculite (蛭石) 蒙特石類 (Smectites)

  11. Crystal: an arrangement of ions or atoms that is repeated at regular intervals in three dimensions. • Unit cell: the smallest repeating three-dimensional array of a crystal. • Formula unit: The chemical composition of layer silicate minerals is normally expressed as one halfof a unit cell in order to simplify the chemical formulas. Formula unit=1/2 unit cell

  12. Layer Charge The magnitude of charge per formula unit, when balanced by cations external to the unit layer.

  13. 高嶺石類 (kaolins) 1:1 layer silicates 1. 基本構造 1:1 層狀 (由一四面體層和八面體層共用一些 O 原子而形成) 2. Unit Formula 組成 Si2ⅣO5Al2Ⅵ(OH)4 3. Lamella 間以 H-bonding 鍵結 c-spacing = 7.2Å (0.72 nm)

  14. 高嶺石類 (kaolins) (續) 4. 土壤中最常見之二種為 Kaolinite 和 Halloysite 5. 高嶺石類為非膨脹性礦物 非常少之同位置換  非常低的 net negative charge主要之負電荷之來源為結晶邊緣 (edge) 之未滿足之 O 或 OH 之價數 CEC: 10 ~100 mmoles(+)·kg-1 6. Surface Area 10 ~ 20×103 m2·kg-1 (no internal surface)

  15. 蛭石(vermiculite) 黑雲母(biotite) [(OH)4(Al2Si6)Ⅳ(MgFe)6ⅥO20]2-2K+ [(OH)4(AlxSi8-x)Ⅳ(MgFe)6ⅥO20]x-·Mg2+ , X<2 CEC: 1200 ~ 1500 m moles (+) ·kg-1 • c-spacing ~ 1.4-1.5 nm Trioctahedral 加熱脫水後1.0 nm • c-spacing ~ 1.0 nm • 有限度膨脹之礦物 • CEC: 200 ~ 400 m moles (+) ·kg-1 • 較雲母類有較少之負電荷,因同位置換少。 • Surface Area: 70 ~120×103 m3·kg-1 • 有較高含量之結晶水。 伊來石(illite) hydrous mica [(OH)4(AlxSi8-x)ⅣAl4ⅥO20]x-K+ 白雲母(muscovite) [(OH)4(Al2Si6)ⅣAl4ⅥO20]2-2K+ Dioctahedral H3O+ • c-spacing 1.0 nm • c-spacing 1.0 nm • CEC: 200 ~ 400 m moles (+) ·kg-1 • Surface Area: 70 ~120×103 m3·kg-1 • 層間鍵結較白雲母弱,層之排列較不規則。 Vermiculites & Micas

  16. Vermiculite. n=0.6-0.9

  17. 蒙特石類 (Smectites) 1. 為2:1層狀構造,類似於水化雲母類,但其有較大之組成變化,因同位置換可發生於四面體層和八面體層。 2. 此類礦物之負電荷由 Ca2+,Mg2+,K+,Na+ 等離子在層間中和之,但無高度之方向性。 3. Interlamellar 之鍵結弱而且決定於存在陽離子之水合程度,而 c-spacing 可由1 nm ~ > 4 nm。 4. 由於層間可存在水合陽離子或極性分子(如:glycerol)  膨脹性礦物 (Expanding clays) 。

  18. 蒙特石類 (Smectites) (續) 5. 比表面積相當大(有相當大之內表面積)。 6. Layer charge 0.25~0.6 per formula unit. 7. 在土壤中常見有蒙特石(Montmorillonite、 Beidellite 和 Nontronite。 CEC: 800 ~ 1200 m moles (+)·kg -1 Surface Area: 600 - 800×103 m2·kg -1

  19. Fig. 4.7 Schematic structure of montmorillonite. (From F. E. Bear (Ed.), Chemistry of the Soil. ACS Monograph Series No. 160. 1964.) x=0.25-0.6

  20. 2:1:1 Layer Silicates

  21. 其他之礦物與無定形物質(非結晶性)-存在於黏粒部分其他之礦物與無定形物質(非結晶性)-存在於黏粒部分 • 碳酸鈣 (CaCO3, Calcite) -乾燥地區,高 pH 之土壤 • 游離氧化物 (Free Oxides) • 矽酸 (Silica) 新近堆積之火山灰形成的土壤中常有無定形之二氧化矽,如在紐西蘭、日本、夏威夷、台灣陽明山。此類土壤中大部分黏粒成分,皆以氧化矽與氧化鋁組成之非結晶性礦物,稱之為鋁英石 (Allophane) ,其化學組成份不一定,其 SiO2/Al2O3≌ 1/2。

  22. 其他之礦物與無定形物質(非結晶性)-存在於黏粒部分 (續) • 氧化鐵 (Iron Oxides) 1.黃至紅褐色之鐵氧化物是非常明顯地存在高風化之熱帶土壤。 2.氧化鐵在土壤中最常見為 Goethite (α-FeOOH) 針鐵礦(水合 結晶性礦物)。 3.在高溫熱帶土壤之表層,Goethite 可轉變成 Hematite (α-Fe2O3,赤鐵礦)

  23. 氧化鋁 (Aluminum Oxides) 1.氧化鋁之(不明顯)灰白色,在土壤中不易顯出。 2.在土壤中主要之結晶氧化鋁為Gibbsite(水鋁氧,γ-Al(OH)3)。 3.非結晶性之 Al(OH)3 可沉積於黏土礦物之層片間(尤其是蛭石)或 coating 在黏粒之表面。 4.在熱帶經強烈風化作用之情況下,氧化鋁及鐵兩者皆會聚積。同時其存在可顯著影響所形成之土壤物理及化學性質。

  24. 表面電荷 • 重要性:黏粒或氧化物之表面電荷決定溶質(陰陽離子)被土壤所吸附----影響肥料,農藥在土壤中之行為。 • 電荷之分類: • 永久電荷 (Permanent charge) :由同位置換而造成---負電荷。 • pH-依賴電荷 (pH-dependent charge) :發生於黏粒之邊緣面(edge faces) 或水合鐵鋁氧化物之表面---可能為正電荷或負電荷,其電荷之大小或正負決定於溶液之 pH。 • 陽離子交換容量 (Cation Exchange Capacity, CEC) • 單位重量之土壤(或黏粒)所吸附之”可交換”陽離子當量或莫耳數。 • 單位:meq/100g soil (clay) mmol(+)/kg soil (clay)

  25. FIGURE 5.11. Representation of pH-dependent charge at kaolinite edges. (By permission from R. K. Schofield and H. R. Samson. 1953 Clay Miner Bull. 2:45.)

  26. X-ray diffraction

  27. Surface Area Measurements • Water vapor adsorption – internal & External • N2-gas adsorption (BET Eq.) – External • Retention of polar molecules – internal & external • Ethylene glycol • glycerol • EGME (ethylene glycol monoethyl ether)

More Related