1 / 71

B. Augustyniak

Spektrometria w podczerwieni. B. Augustyniak. B. Augustyniak. Zagadnienia. Techniki spektroskopii absorpcyjnej w podczerwieni Spektrofotometry siatkowe (IR) i fourierowskie (FTIR. B. Augustyniak. Tematyka. Spektroskopia - podział i zastosowanie Promieniowanie elektromagnetyczne

palmer
Télécharger la présentation

B. Augustyniak

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Spektrometria w podczerwieni B. Augustyniak B. Augustyniak

  2. Zagadnienia Techniki spektroskopii absorpcyjnej w podczerwieni Spektrofotometry siatkowe (IR) i fourierowskie (FTIR B. Augustyniak

  3. Tematyka • Spektroskopia - podział i zastosowanie • Promieniowanie elektromagnetyczne • Oddziaływanie promieniowania elektromagnetycznego z drgającymi molekułami • Częstości grupowe • Zastosowanie spektroskopii w podczerwieni • Budowa i zasada działania spektrometrów do podczerwieni: - klasycznych - fourierowskich dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  4. Wielkości charakteryzujące promieniowanie elektromagnetyczne Właściwości falowe Prędkość w próżni c=3x108 m/s Okres drgań T [s] Częstotliwość drgań  [Hz] Długość fali =c/= c/= c Liczba falowa  [cm-1] Właściwości korpuskularne Energia promieniowania E= h Związek między falowym a korpuskularnym opisem promieniowania E=h= hc/ h=6.62x10-34 [Js] - - dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  5. Widmo fal EM a spektroskopia http://www.fizyka.umk.pl/~psz/w13.pdf B. Augustyniak

  6. Widmo promieniowania elektromagnetycznego 780 nm – 1 mm 0.7 – 5 m – bliska podczerwień (NIR) 5 – 30 m – średnia podczerwień (MIR) 30 – 1000 m – daleka podczerwień (FAR) dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  7. Widmo fal EM a spektroskopia IR B. Augustyniak Appendix_1_Qual_Instrumentation_03.pdf

  8. Podział zakresu średniej podczerwieni 4000 – 400 cm-1 • 4000-2500 cm-1 drgania rozciągające wiązań pojedynczych pomiędzy atomami znacznie różniącymi się masą np. C-H, O-H, N-H, S-H • 2500-2000 cm-1 drgania rozciągające wiązań potrójnych C≡C , C≡N • 2000-1500 cm-1 drgania rozciągające wiązań podwójnych C=C, C=N, N=N, N=O • 1500-1000 cm-1 „obszar daktyloskopowy” • Drgania rozciągające wiązań pojedynczych atomów o zbliżonych masach: C-C, C-N, C-O • Drgania deformacyjne różnych wiązań • Drgania szkieletowe cząsteczki • 1000- 600 cm-1drgania deformacyjne poza płaszczyzną wiązań C-H w układach aromatycznych i alkenylowych dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  9. Jak promieniowanie elektromagnetyczne oddziałuje z materią • Całkowita energia cząsteczki jest rozdzielona pomiędzy różne rodzaje energii. Rodzaje energii są powiązane z różnymi formami ruchu cząsteczki: • Translacyjna • Rotacyjna • Oscylacyjna • Elektronowa Promieniowanie radiowe powoduje zmianę orientacji magnetycznej jąder (Spektrometria NMR) Promieniowanie mikrofalowe powoduje wzbudzenie rotacji (Spektroskopia mikrofalowa) Promieniowanie podczerwone – wzbudza oscylacje atomów (Spektroskopia IR) Promieniowanie widzialne i ultrafioletowe – przejścia między poziomami elektronowymi powłoki walencyjnej (Spektroskopia UV-VIS) dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  10. Rodzaje drgań molekuł Drgania rozciągające – następują zmiany odległości między atomowych wzdłuż osi wiązań. rozciągające symetryczne (symmetrical stretching) rozciągające asymetryczne (assymetrical stretching) Drgania zginające – zmianie ulegają kąty pomiędzy wiązaniami nożycowe (scissoring) kołyszące (rocking) kołyszące (rocking) kołyszące (rocking) http://www.fizyka.umk.pl/~psz/w13.pdf B. Augustyniak

  11. Rodzaje drgań Drgania rozciągające Drgania deformacyjne W płaszczyźnie Kołyszące Nożycowe Poza płaszczyzną Wachlarzowe Skręcające dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  12. Stretch – Vibration or oscillation along the line of the bond • Bend – Vibration or oscillation not along the line of the bond H H C C H H H H H H C C C C C C C C H H H H symmetric asymmetric scissor in plane twist out of plane wag rock chemistry.bd.psu.edu/justik/...212/.../CHEM%20210%20IR%202010.ppt

  13. Drgania oscylacyjne cząsteczki wody Cząsteczka nieliniowa posiada 3N-6 (3x3 - 6) oscylacyjnych stopni swobody O-H drganie rozciągające asymetryczne O-H drganie rozciągające symetryczne O-H drganie deformacyjne dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  14. Oscylacje molekuł Oscylacje molekuły dwuatomowej z dobrym przybliżeniem opisuje prawo Hooke’a: gdzie  jest liczbą falową [cm-1], m1 oraz m2 masami atomów 1 oraz 2 [kg], c - prędkością dźwięku oraz f stałą siłową wiązania [N/m]. f is proportional to bond strength or bond order. C=O vibrates at a higher frequency than C-O. Furthermore, the change in the force constant of different carbonyl groups can be understood based on the contribution of resonance structures. The base value for the stretching frequency of a carbonyl (e.g., acetone) is CO ˜ 1715 cm-1. http://www.fizyka.umk.pl/~psz/w13.pdf

  15. Zależność częstości drgań od masy i siły wiązania atomów http://www.fizyka.umk.pl/~psz/w13.pdf B. Augustyniak

  16. Zależność częstości drgań od masy i siły wiązania atomów Photosynth Res (2009) 101:157–170 B. Augustyniak

  17. Rodzaje drgań w zakresie średniej podczerwieni dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  18. Warunki niezbędne dla rezonansowego oddziaływania światła na drgania molekuły 1 2 3 B. Augustyniak http://www.fizyka.umk.pl/~psz/w13.pdf

  19. Opis ilościowy efektu absorbcji energii przez molekuły http://www.fizyka.umk.pl/~psz/w13.pdf B. Augustyniak

  20. Wielkości opisujące zjawisko absorpcji Intensywność wiązkipadającej I0 przechodzącej I Absorbancja A=logI0 /I Transmitancja T= I/I0x100%  A=log1/T Prawo Lamberta-Beera A=cl dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  21. WIDMO ABSORPCJI Each stretching and bending vibration occurs with a characteristic frequency as the atoms and charges involved are different for different bonds The y-axis on an IR spectrum is in units of % transmittance In regions where the EM field of an osc. bond interacts with IR light of the same  – transmittance is low (light is absorbed) In regions where no osc. bond is interacting with IR light, transmittance nears 100% chemistry.bd.psu.edu/justik/...212/.../CHEM%20210%20IR%202010.ppt

  22. Widmo transmisji oraz aborbcji http://www.fizyka.umk.pl/~psz/w13.pdf B. Augustyniak

  23. Rezonanse częstotliwości rgań własnych atomów B. Augustyniak

  24. Podczerwień bliska NIR 0.7 – 5 m Pasma absorpcyjne pochodzą od podstawowych drgań oscylacyjnych dających nadtony i pasma kombinacyjne. W tym regionie występują nadtony drgań rozciągających wiązań: • OH – np. w wodzie (trzy pasma o różnej intensywności pozwalają na pomiary wilgotności w zakresie 1-90%) • NH - organiczny azot ( amidy) • CH – oleje Zastosowanie: • badanie zawartości wilgoci w mące, skrobi, mleku w proszku, kawie rozpuszczalnej, chipsach • analiza widma światła odbitego lub emitowanego przez planety dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  25. Podczerwień daleka FAR – poniżej 200 cm-1 30 – 1000 m • W tym obszarze zachodzi absorpcja spowodowana przejściami pomiędzy różnymi poziomami rotacyjnymi w cząsteczce Zastosowanie: • badanie rezonansu sieci kryształów • badanie drgań o niskiej częstotliwości całych zrębów molekularnych białek oraz fragmentów łańcuchów aminokwasowych lub też całych molekuł względem siebie dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  26. W jakim obszarze absorbują grupy funkcyjne?

  27. Absorpcja drgań rozciągających wiązań pojedynczych i wielokrotnych dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  28. Kwantowa liczba oscylacji Kwantowa liczba rotacji Krzywe energii potencjalnej dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  29. Krzywe energii potencjalnej http://www.authorstream.com/Presentation/parmar.arpan-76792-infrared-spectroscopy-instruments-final-ir-sem-education-ppt-powerpoint/

  30. Widmo formaldehydu H2C=O w fazie gazowej Cząsteczka nieliniowa posiada 3N-6 oscylacyjnych stopni swobody czyli 3x4-6 = 6 dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  31. Analiza widma IR • Krok pierwszy: • W obszarze 1820-1660 cm-1 poszukujemy pasma karbonylowego. Jest to zazwyczaj najbardziej intensywne pasmo w widmie. Jeżeli takie pasmo zostało znalezione poszukujemy innych pasm związanych z grupami funkcyjnymi zawierającymi wiązanie C=O dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  32. Analiza widm IR • Krok drugi: • Jeżeli stwierdziliśmy obecność grupy karbonylowej wówczas określamy czy jest ona składnikiem kwasu, estru, aldehydu bądź ketonu dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  33. Kwasy • szeroka absorpcja O-H 3300-2500 cm-1 • pasmo drgań rozciągających C-O o średniej intensywności 1100-1300 cm-1 • C=O 1725-1700 cm-1 dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  34. Estry • pasmo drgań rozciągających C-O o średniej intensywności 1100-1300 cm-1 • C=O 1745-1720 cm-1 dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  35. Aldehydy • dwa słabe pasma C-H ok. 2850 i 2750 cm-1 • C=O 1740-1720 cm-1 dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  36. Ketony • C=O 1725-1705 cm-1 dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  37. Analiza widm IR • Krok trzeci • Jeżeli w widmie nieobecne jest pasmo karbonylowe wówczas poszukujemy pasma O-H alkoholu w obszarze 3300-2600 cm-1 oraz pasma C-O w obszarze 1300-1100 cm-1 dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  38. Analiza widm IR • Krok czwarty • Jeżeli C=O i O-H są nieobecne, poszukujemy wiązań wielokrotnych • C-H powyżej 3000 cm-1 • C=C 1650-1450 cm-1 dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  39. Analiza widm IR • Krok piąty • brak grup funkcyjnych świadczy o obecności alkanu lub halogenopochodnej dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  40. Zastosowanie spektroskopii w podczerwieni w zakresie średniej podczerwieni4000-400 cm-1 • Identyfikacja substancji o znanej strukturze • Określanie struktury cząsteczki na podstawie tabeli częstości grupowych • Określanie czystości związków • Kontrola przebiegu reakcji • Analiza ilościowa • Badanie oddziaływań międzycząsteczkowych dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  41. Zastosowanie spektroskopii IR w analizie związków nieorganicznych KNO2 sieć krystaliczna składa się z kationów K+i anionów NO2- Można założyć, że drgania jonów są niezależne od siebie W widmie IR będziemy obserwować 3N-6 pasm anionu NO2- sym 1335 cm-1 asym1250 cm-1 • 830 cm-1 • Zmiana kationu powoduje jedynie niewielkie przesunięcia pasm anionu • Gdy kation powoduje modyfikację krystalograficzną, ulegają zmianie pasma absorpcyjne związane z drganiami sieci krystalograficznej, występujące w dalekiej podczerwieni – poniżej 600 cm-1 dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  42. SPEKTROMETRY

  43. Zasada badania widm Zasada badania spektrometrem podczerwieni S – źródło promieniowania, P – komora wiązki próbki, O – komora wiązki odniesienia, F – fotometr, M – monochromator, D – detektor, W – wzmacniacz, R – rejestrator. Porównywane jest natężenie promieniowania przechodzącego przez ‘P’ i ‘O’ B. Augustyniak Oleś A. Metody doświadczalne fizyki ciała stałego, WNT, Warszawa, 1998

  44. Spektrometry IR dyspersyjny fourierowski dr Alina Dubis,biol-chem.uwb.edu.pl/ala/Specjalizacja.ppt

  45. IR Sources Sources - inert solids that heat electrically to 1500 – 2200 K. •Emit blackbody radiation produced by atomic and molecular oscillations excited in the solid by thermal energy. •The inert solid “glows” when heated. •Common sources: 1. Nernst glower - constructed of a rod of a rare earth oxide (lanthanide) with platinum leads. 2. Globar - Silicon carbide rod with water cooled contacts to prevent arcing. 3. Incandescent wire - tightly wound wire heated electrically. Longer life but lower intensity. www.lasalle.edu/~prushan/...files/Instrumental%20Lecture%208.ppt

  46. DETECTORS 1. Thermal transducer • Constructed of a bimetal junction, which has a temperature dependant potential (V). (similar to a thermocouple) • Have a slow response time, so they are not well suited to FT-IR. 2. Pyroelectric transducer • Constructed of crystalline wafers of triglycine sulfate (TGS) that have a strong temperature dependent polarization. • Have a fast response time and are well suited for FT-IR. 3. Photoconducting transducer • Constructed of a semiconducting material (lead sulfide, mercury/cadmium telluride, or indium antimonide) deposited on a glass surface and sealed in an evacuated envelope to protect the semiconducting material from the environment. • Absorption of radiation promotes nonconducting valence electrons to a conducting state, thus decreasing the resistance () of the semiconductor. • Fast response time, but require cooling by liquid N2. www.lasalle.edu/~prushan/...files/Instrumental%20Lecture%208.ppt

  47. SPEKTROMETR DYSPERSYJNY

  48. Spektrometr ‘Dyspersyjny’ – źródło światła o danej częstości 1. Źródłem promieniowania jest lampa (żarzone włókno z tlenków cyrkonu, toru i ceru, węglik krzemu) o temperaturze 2000 K. Maksimum emisji dla 5000 – 7000 cm-1 2. Światło emitowane przez lampę pada na pryzmat lub siatkę dyfrakcyjną Uzyskuje się widmo ‘dyspersyjne’. 3. Do naświetlania próbki wybiera się fragment z tak uzyskanego widma (za pomocą szczeliny) o wybranej długości fali B. Augustyniak Oleś A. Metody doświadczalne fizyki ciała stałego, WNT, Warszawa, 1998

  49. Spektrometr ‘dyspersyjny’ Sposób oświetlania i analizy światła S – źródło światła ( z układu dyspersyjnego) , Z – zwierciadła, Zwierciadło Z6 - kieruje do fotometru światło z ‘O’ lub z ‘P’ B. Augustyniak Oleś A. Metody doświadczalne fizyki ciała stałego, WNT, Warszawa, 1998

  50. SPEKTROMETR FOURIEROWSKI

More Related