1 / 27

Origin of Ultra High Energy Cosmic Rays

Astrophysical Sources, Gamma-Ray Connection. Origin of Ultra High Energy Cosmic Rays. Susumu Inoue (NAOJ). astro-ph/0701835 (brief review). GRBs. AGNs. clusters. collaborators:. G. Sigl (APC), F. Miniati (ETH), E. Armengaud (CEA). F. Aharonian (MPIK), N. Sugiyama (Nagoya ).

paniz
Télécharger la présentation

Origin of Ultra High Energy Cosmic Rays

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Astrophysical Sources, Gamma-Ray Connection Origin of Ultra High Energy Cosmic Rays Susumu Inoue (NAOJ) astro-ph/0701835 (brief review) GRBs AGNs clusters collaborators: G. Sigl (APC), F. Miniati (ETH), E. Armengaud (CEA) F. Aharonian (MPIK), N. Sugiyama (Nagoya) K. Asano (NAOJ)

  2. 1. general aspects outline propagation: extragalactic radiation and B fields source candidates: acceleration & energetics 2. physics of selected UHECR source candidates I. AGNs different AGN types II. GRBs GeV-TeV g-rays III. cluster accretion shocks UHECR nuclei UHE p-induced X/g-rays UHECR-induced secondary X/g radiation signatures neutrinos -> Halzen

  3. UHECRs are the highest energy particles observed in the universe, exceeding 1020 eV. Their origin is unknown. The problem: Emax~ 3x1020 eV ~50J ~kinetic E of 100km/h fastball (220km/h tennis serve)

  4. before July (ICRC) 07 spectrum at least up to 1020 eV observations -> Kampert UHECR observations AGASA HiRes light dominant up to ~<2x1019 eV? composition arrival directions globally isotropic no ID with sources Xmax [g cm-2] >1020 eV

  5. UHECRs: energy losses during propagation protons: photopair+photopion p+gCMB→ p+ e+e- Ep>~5x1017eVp+gCMB→ p+ p Ep>~7x1019eV Fe Lloss p (Greisen-Zatsepin-Kuzmin limit) Lp, 20eV <~100 Mpc g nuclei: photopair+photodisint. A+gCMB→ A+ e+e-A+gFIRB→ A-iN +iN Nagano & Watson 00 e.g. Stecker & Salamon 99 E LFe, 20eV <~300 Mpc nuclei possible at the highest E! Watson astro-ph/0408110 Anchordoqui+, Allard+, Armengaud+, …

  6. should be correlated with large scale struc. very uncertain observationally and theoretically extragalactic B fields crucial differences between theoretical models Sigl, Miniati & Ensslin 03,04 Dolag+ 04, 05 Brüggen+ 05 propagation -> Das Kang+ 07 also uncertain Galactic B fields secondary photon/neutrino signatures desirable to pinpoint sources!

  7. topological defects, EHE n Z-bursts, UHECRons, superheavy DM… top-down models: very strongly constrained Auger spectrum Auger photon limits Yamamoto+ arXiv: 0707.2638 Semikoz+ arXiv: 0706.2690 superheavy DM ruled out spectral steepening at E>1019.6 eV (6 sigma) also claimed by HiRes

  8. adapted from Yoshida & Dai 98 “Hillas plot” UHECR sources: acceleration E ≦ Ze B R (v/c) confinement B GRBs B~∝R-1 Emax acceleration vs: escape source lifetime adiab. expansion loss radiative loss AGN jets clusters R

  9. shock acceleration • - power-law spectrum • dN/dE~∝E-2 for strong shock • very efficient • up to ~50% of kinetic energy upstream downstream shock front • consistent with observations • in-situ: earth-solar wind, … • SNRs, radio galaxy hot spots, … acceleration -> Berezhko

  10. kinetic E input into the universe UHECR sources: energy budget AGNs (radio galaxies) z-dep. LF Willott+ 01 Lkin-Lrad correlation Rawlings 92 supernovae, GRBs ∝ star formation rate Porciani & Madau 01 ESN=1051 erg EGRB=1053 erg, indep. of beaming cluster accretion Press Schechter mass function Lacc(M)~0.9x1046 (M/1015 MQ)5/3 erg/s Keshet+ 04 UHECR budget @1019 eV differential (per unit z) uCR ~3x10-19 erg cm-3 ~1054 erg Mpc-3 dEkin/dz=(dt/dz)∫dL L dn/dL

  11. GeV blazar FR II radio galaxy supermassive black hole +accretion disk (flow) active galactic nuclei (AGNs) high- power radio-loud (relativistic jet) ~<1% low- power ~9% radio- quiet (no jet) ~90% TeV blazar (BL Lac) FR I radio galaxy Seyfert galaxy radio-quiet quasar activity timescales ~107-108 yr ~<UHECR delay time

  12. near-nucleus? R~1013-1014 cm B~104G? Seyfert or radio-quiet quasar AGNs: acceleration sites Emax~Epg~<1018eV e.g. Szabo & Protheroe 94 inconsistent with observed keV-MeV UHECR accel. not expected from Chandra webpage

  13. near-nucleus? low power (FR I) radio galaxy AGNs: acceleration sites UHECR accel. not expected inner jet (blazar) R~1016-1017 cm B~0.1-1G Emax~Epg~<1020eV e.g. Mannheim 93 adiabatic loss -> n conversion escape? shear-layer acceleration? accel./escape non-trivial from Chandra webpage

  14. near-nucleus? high power (FR II) radio galaxy AGNs: acceleration sites UHECR accel. not expected inner jet (blazar) Emax~Epg~<1020eV accel./escape non-trivial hot spot R~1021 cm B~1mG Emax~Eesc~1020-21eV e.g. Rachen & Biermann 93 from Chandra webpage accel./escape easiest

  15. AGNs: anisotropy expectations? Takami+ 06 ns=5x10-6 Mpc-3 anisotropy expectations for different AGN types Takami, SI+, in prep.

  16. proton synchrotron from hot spots/knots AGNs: UHECR-induced secondary emission Aharonian 02 “GZK” radiation from intracluster AGNs Armengaud, Sigl & Miniati 05

  17. internal + external (forward + reverse) shocks GRBs UHECR accel. site Waxman 95, Vietri 95 Gialis & Pelletier 03 Wick, Dermer & Atoyan 04 adapted from Meszaros 01 radio-IR-opt-X afterglow prompt X-g emission optical flash, radio flare internal shocks external reverse shock external forward shock

  18. Waxman & Miralda-Escude 96 GRBs as UHECR sources time delayt(Ep,D)~q2D/4c ~107 yr Ep,20-2 D100Mpc2lMpcB-82 individual sources->narrow spectrum at given time

  19. Asano & Inoue ApJ, in press arXiv:0705.2910 • electrons+protons in internal shocks (prompt phase) • pair cascading, pg interactions, various radiative processes… • parameters: Esh, Dt, G, fB=uB/ue, assume up=ue, pp=2 GRBs: GeV-TeV g signature of UHECRs proton synchrotron inverse Compton

  20. GRBs: GeV-TeV g signature of UHECRs secondary pair synchrotron+ muon synchrotron+ double (multiple) breaks -> proton signature GLAST, MAGIC (II), HESS (II), VERITAS, CANG.III … MILAGRO, Auger…

  21. accretion (minor merger) cluster accretion shocks Ryu+ 03 strong shocks Mach no. protons Ep, max~ 1018-1019 eV Kang, Rachen, Biermann 97 HOWEVER Fe nuclei (Z=26) if Bs~1 mG EFe, max>~1020 eV

  22. Inoue, Sigl, Miniati & Armengaud, PRL submitted (astro-ph/0701167) nuclei from cluster accretion shocks as UHECRs Emax acceleration vs CMB losses, lifetime shock radius, velocity, etc. Hubble Rs~3.2 Mpc Vs~2200 km/s Bohm limit shock accel. time tacc=(20/3) rgc/Vs2 escape limit tesc~R2/5k(E) Emax/Z~7x1018 eV heavy nuclei Emax for Bs~1 mGEFe, max~1020 eV

  23. SI, Sigl, Miniati, Armengaud PRL, submitted (astro-ph/0701167) UHECRs as nuclei from clusters spectrum anisotropy with EGMF fCR~0.005-0.3 100 events>4x1019eV no EGMF fCR~0.002 composition 1000 events>4x1019eV consistent with current data (spectrum <2 sigma) with some heavy enhancement clear predictions for Auger, Telescope Array, JEM-EUSO… 1019 eV 1020 eV

  24. composition latest Auger results Unger+ arXiv: 0706.1495 mixed composition at all E becoming heavier at highest E?

  25. p(1019eV) +gCMB→ p+ e+e- (1016eV) SI, Aharonian, Sugiyama 05 UHE proton-induced hard X+g emission from clusters e+e-+B(~mG)→keV, e+e-+gCMB→TeV Coma D=100 Mpc Suzaku? NeXT, Simbol-X, NuSTAR HESS, MAGIC, CANG.3, VERITAS…

  26. AGNs summary different likelihood for different types high-power RG > low-power RG > radio-quiet GRBs tight energy budget characteristic GeV-TeV signatures cluster accretion shocks (nuclei) consistent for some enhancement in heavy composition characteristic spectra, anisotropy, composition hard X-rays + TeV gamma-rays other sources? starburst galaxies … Galactic NS, magnetars … none of these?

  27. 宇宙線 ああガンマ線 ニュートリノ “Cosmic rays, ah Gamma-rays, Neutrinos.” The real beauty will be in the combination of the techniques! concluding haiku 「松島や ああ松島や 松島や」  松尾芭蕉(?) “Matsushima, ah Matsushima, Matsushima.” - Matsuo Basho (?)

More Related