1 / 26

AP Biology Exam Review

AP Biology Exam Review. 2011 The year everyone passes the AP exam!!. Plant Structure: Cells. parenchyma (least differentiated, most abundant; photosynthetic – leaf tissue); collenchyma (support – celery strings ); sclerenchyma (reinforced, tough cell walls, no

parker
Télécharger la présentation

AP Biology Exam Review

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. AP Biology Exam Review 2011 The year everyone passes the AP exam!!

  2. Plant Structure: Cells parenchyma (least differentiated, most abundant; photosynthetic – leaf tissue); collenchyma(support – celery strings); sclerenchyma(reinforced, tough cell walls, no longer growing – wood, nutshells) composeed of lignin, cellulose and a secondary cell wall; dead at maturity.

  3. Plant Cells

  4. Plant Tissue b. tissue: dermal (protective outer coating); vascular (transport), ground (everything else)

  5. Dicot Root and Stem

  6. Leaf Structure Identify: Cuticle, upper and lower epidermis, guard cells, stomata, palisade mesophyll, spongy mesophyll (parenchyma cells), vascular bundle Where does C3 Calvin cycle occur? Where does C4 occur? What happens during the Calvin Cycle?

  7. Specialized Cells xylem: tracheids (long, thin) & vessel elements (short, wide) – conduct water & dead at functional maturity phloem: sieve-tube elements & companion cells – conduct sugar & sieve-tube elements are alive at functional maturity, but lack nucleus, ribosomes & central vacuole, connected by plasmodesmata; companion cells provide molecular needs of sieve-tube elements

  8. Growth http://wps.prenhall.com/esm_freeman_biosci_1/7/1953/500153.cw/index.html structure: meristems (apical, lateral, vascular cambium, cork cambium) – embryonic stem cells that produce new cells

  9. Woody Tree cross section through angiosperm tree (from center outward): pith, primary xylem, secondary xylem, vascular cambium, secondary phloem, primary phloem, cortex, cork cambium, bark

  10. Gas exchange structure: stomates in leaves function: diffusion, transpiration, supports Calvin cycle What gases are going in? Going out??

  11. Energy Production a. structure: leaf (mesophyll, palisades, chloroplasts, photosynthesis, phloem, xylem)

  12. Photosynthesis

  13. Energy Production function: production of sugars for energy storage and plant structure, bulk flow / translocation of sugars = osmotic gradient from source to sink

  14. Mineral and Water Transport a. structure: roots, root hairs, xylem, stomates, transpiration (adhesion, cohesion, evaporation), endodermis & Casparian strip, NPK Casparian Strip: A band of suberizedand/or lignified wall material in the radial (anticlinal) and transverse walls of cells of the endodermis. It ensures that water and solutes pass through the living protoplast of the endodermal cells, rather than through the cell walls, thus facilitating selective filtering of the sap solutes and control of the rate of flow.

  15. Mineral and Water Transport function: supports photosynthesis & synthesis symbiotic relationships (mutualism) mycorrhizae (fungus) – live in soil & extend into plant roots; increases water & mineral absorption; fungus gets food

  16. Rhizobium (N-fixing bacteria) – live in root nodules of legume family; converts N into soluble form for plant use; bacteria get food and shelter

  17. Responses a. hormones auxin(stimulate cell elongation), gibberellins (fruit growth & stimulate cell elongation with auxins) ethylene(gas: fruit ripening, autumn leaf fall, death of annual plants, apoptosis), cytokinins(stimulate cell division, cytokinesis & differentiation; coordinated with auxins) abscisicacid (slows growth, seed dormancy) signal transduction pathway: reception, transduction, response

  18. Responses gravitropism(settling of starch grains) phototropism (elongation of cells on shaded side) photoperiod/flowering (changes in phytochromes: Pr converts to Pfr in light) thigmotropism (loss of K+ & H2O from cells) short-day (long night plants: early fall or spring flowering) long-day (short night plants: late spring or summer flowering) day-neutral plants (flowering at any time): length of darkness vs. critical period

  19. Reproduction structure: flower, petals, stamen, pistil & ovules

  20. Reproduction pollen grain (microspores or male gametophyte): two sperm nuclei ovules (megaspores or female gametophyte) : eight nuclei (1 egg, 2 polar nuclei, 5 others)

  21. Double Fertilization one sperm nucleus fertilizes egg = 2n zygote other sperm nucleus combines with 2 polar nuclei = 3n endopserm (food storage)

  22. Alternation of Generations multicellulardiploid (sporophyte) alternating with multicellular haploid (gametophyte) diploid sporophyte makes haploid spores (meiosis) haploid gametophyte makes haploid gametes (mitosis)

  23. Prevention of self-fertilization: self-incompatibility What are the advantages?

  24. Evolution mosses (bryophytes) no vascular system, swimming sperm, dominant gametophyte / parasitic sporophyte ferns (pteridophytes) vascular, swimming sperm, dominant sporophyte / independent, reduced gametophyte conifers (gymnosperm) pollen & naked seeds, dominant sporophyte (tree) / highly reduced gametophyte (pollen & ovule in cones) flowering plants (angiosperm) flowers, fruits & double fertilization, dominant sporophyte / highly reduced gametophyte (pollen & ovule in flowers)

  25. Labs Transpiration Lab Be sure to review the procedures and the conclusions, and understand: a. Factors that affect rate of transpiration b. How to set up a similar experiment c. Controls vs. Experimental

  26. Any Questions?

More Related