1 / 26

Davranış seçme işlevinde dopaminin etkisine ilişkin dinamik bir model

Davranış seçme işlevinde dopaminin etkisine ilişkin dinamik bir model. Özkan Karabacak Neslihan Serap Şengör İ.T.Ü. Elektrik-Elektronik Fakültesi Devreler ve Sistemler A.B.D. Davranış seçme işlevinde dopaminin etkisine ilişkin dinamik bir model. Dinamik model nedir?

paul
Télécharger la présentation

Davranış seçme işlevinde dopaminin etkisine ilişkin dinamik bir model

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Davranış seçme işlevinde dopaminin etkisine ilişkin dinamik bir model Özkan Karabacak Neslihan Serap Şengör İ.T.Ü. Elektrik-Elektronik Fakültesi Devreler ve Sistemler A.B.D.

  2. Davranış seçme işlevinde dopaminin etkisine ilişkin dinamik bir model • Dinamik model nedir? • C-BG-TH döngüsünü nasıl modelleyeceğiz? • Biraz da matematik gerekmiyor mu? • Davranmanın dinamik modelini nasıl oluşturduk? • Davranış seçme işlevinin dinamik modelini nasıl elde ettik? • Bu modeli Stroop testi için nasıl kullandık? • Ne elde ettik, nasıl yorumladık?

  3. Dinamik Model • Amacımız, bilişsel süreçler nasıl oluşuyor, neden oluşuyor anlamak. • İki yol tutabilirdik...... * hücre seviyesi * sistem seviyesi • Ama biz.......

  4. Korteks arttırıcı azaltıcı SNc Striatum D1D2 STN GPi/SNr GPe Talamus Bazal Çekirdekler Korteks-Bazal Çekirdekler-Talamus Döngüsü

  5. arttırıcı azaltıcı korteks STN STR Talamus Bazal Çekirdekler GPi/SNr Korteks-Bazal Çekirdekler-Talamus Döngüsü

  6. Kim demiş “nigrostriatal dopamin sistemi bilişsel işlevleri de etkiler” diye? •Horvitz, J.C., (2000) “Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events”, Neuroscience, 96, 651-656. •Monchi,O., Petrides M., Doyon, J., Postuma,R.B., Worsley, K., & Dagher, A., (2004) “Neural Bases of Set-Shifting Deficits in Parkinson's Disease”. The Journal of Neuroscience,  24, 702-710. •Djurfeldt M., Ekeberg Ö., &Graybiel A.M., (2001) “Cortex-basal ganglia interaction and attractor states”. Neurocomputing, 38-40, 573-579.

  7. w u f(u) Geri beslemeli sinir hücresi Biraz da Matematik

  8. Biraz daha matematik dallanma diyagramları

  9. Korteks(p) BASAL GANGLIA STR(r) Talamus(m) STN(n) GPi/SNr(d) C-BG-TH-C çevrimi Şimdi de davranış AZALTICI BAĞLANTILAR ARTTIRICI BAĞLANTILAR Bir hücrenin aktivasyon fonksiyonu ve doyma bölgeleri

  10. … yapılıyor mu, yapılmıyor mu?

  11. İki davranışdan birini nasıl seçeriz?

  12. İki davranışdan birini nasıl seçeriz? θ = 0.7

  13. İki davranışdan birini nasıl seçeriz? θ = 1

  14. İki davranışdan birini nasıl seçeriz? θ = 1.3

  15. Korteks BASAL GANGLIA STR Talamus STN GPi/SNr C-BG-TH-C çevrimi Stroop testi için ne yaptık?

  16. Ne elde ettik ….. θ = 0.6

  17. Ne elde ettik ……. θ = 1

  18. Ne elde ettik ……. θ = 1.2

  19. ....nasıl yorumladık?

  20. OKUDUKLARIMIZ • Amos, A., (2000) “A computational model of information processing in the frontal cortex and basal ganglia”, Journal of Cognitive Neuroscience, 12, 505-519. • Alexander, G.E., & Crutcher M.D., (1990a) “Functional architecture of basal ganglia circuits: neural substrates of parallel processing”, Trends in Neuroscience, 13, 266-271. • Alexander, G.E., & Crutcher M.D., DeLong M.R., (1990b) “Basal ganglia-thalamacortical circuits: Parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions”, Progress in Brain Research, 85, 119-146. • Ashby, F.G., & Casale, M.B., (2003) “A model of dopamine modulated cortical activation”, Neural Networks, 16, 973-984. • Bar-Gad, I., Morris, G., Bergman, H., (2003) “Information processing, dimensionality reduction and reinforcement learning in the basal-ganglia”, Progress in Neurobiology, 71, 439-473. • Behrendt, R. P., (2004) “A neuroanatomical model of passivity phenomena”, Consciousness and Cognition, 13, 579-609. • Braver T.S., & Cohen J. D., (2000) “On the control of control: the role of dopamine in regulating prefrontal function and working memory”, In Attention and Performance XVII. Control of Cognitive Processes. S. Monsell, J. Driver, Eds. 713-737.

  21. Churchland P.S., (1988) “Neurophilosophy: Toward a unified science of the mind-brain”, Cambridge, The MIT Press. • Cohen J.D., Dunbar, K., & McClelland J.L., (1990) “The control of automatic processes: A parallel distributed processing account of the Stroop effect”. Psychological Review, 97, 332-361. • Cohen J. D., & Servan-Schreiber D., (1992) “Context, cortex, and dopamine: a connectionist approach to behaviour and biology in schizophrenia”, Psychological Review, 99, 45-77. • Cohen J.D., Braver, T.S. & Brown J.W., (2002) “Computational perspectives on dopamine function in prefrontal cortex”. Current Opinion in Neurobiology, 12, 223-229. • Cohen J.D., (2005) “The vulcanisation of the human brain: A neural perspective on interactions between cognition and emotion”, Journal of Economic Perspectives, 19, 3-24. • Doya, K., (2000) “Reinforcement learning in continuous time and space”, Neural Computation, 12, 219-245. • Djurfeldt M., Ekeberg Ö., &Graybiel A.M., (2001) “Cortex-basal ganglia interaction and attractor states”. Neurocomputing, 38-40, 573-579. • Durstewitz, D., & Seamans, (2002) “The computational role of dopamine D1 receptors in working memory”, Neural Networks, 15, 561-572. • Goel V., Pullara S.D., & Grafman J., (2001) “A computational model of frontal lobe dsyfunction: working memory and the Tower of Hanoi task”, Cognitive Science, 25, 287-313. • Graybiel A.M. (1990) “Neurotransmitters and neuromodulators in the basal ganglia”, Trends in Neuroscience, 13, 244-254. • Graybiel A.M. (1995) “The Basal Ganglia”, Trends in Neuroscience, 18, 60-62.

  22. Graybiel A.M. (2004) “Network-level neuroplasticity in cortico-basal ganglia pathways”, Parkinonism and Related Disorders, 10, 293-296. • Grossberg, S. (1980) “How does a brain build a cognitive code?”, Psychological Review, 87, 1-51. • Gurney K., Prescott T.J., & Redgrave P., (2001a) “A computational model of action selection in the basal ganglia. I. A new functional anatomy”, Biological Cybernetics, 84, 401-410. • Gurney K., Prescott T.J., & Redgrave P., (2001b) “A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour”, Biological Cybernetics, 84, 411-423. • Gurney K.N., Humphries M., Wood R., Prescott T.J., & Redgrave P., (2004) “Testing computational hypotheses of brain systems function: a case study with the basal ganglia”, Network: Computation in Neural Systems, 15, 263-290. • Holroyd C.B., & Coles M.G.H., (2002) “The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity”, Psychological Review, 109, 679-709. • Horvitz, J.C., (2000) “Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events”, Neuroscience, 96, 651-656. • Karabacak, O., & Sengor N.S., (2005) “A dynamical model of a cognitive function:action selection”, 16th IFAC congress. • Mink, J.W., (1996) “The basal ganglia:Focused selection and inhibition of competing motor programs”, Progress in Neurobiology, 50, 381-425. • Monchi, O., Petrides M., Doyon, J., Postuma, R.B., Worsley, K., & Dagher, A., (2004) “Neural Bases of Set-Shifting Deficits in Parkinson's Disease”. The Journal of Neuroscience,  24, 702-710. • Norman, D. A., &Shallice T., (1986) “Attention to action: Willed and automatic control of behaviour”. In Consciousness and Self-Regulation: Advances in Research and Theory. R.J. Davidson, G.E., Schwartz & D. Shapiro, Eds. Vol. 4:1-18. Plenum, New York.

  23. Ouchi, Y., Kanno T., Okada H., Yoshikawa E., Futatsubashi M., Nobezawa S., Torizuka T., Tanaka K., (2001) “ Changes in dopamine availability in the nigrostriatal and mesocortical dopaminergic systems by gait in Parkinson’s disease”, Brain, 124, 284-292. • Sagvolden, T., Johansen, E.B., Aase, H.& Russel, V.A., (2005) “A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes”, Behavioral and Brain Sciences, 28, 397-468. • Servan-Schreiber D., Printz H., &Cohen D., (1990) “A network model of catecholamine effects: gain, signal-to-noise ratio, and behaviour”, Science, 249,892-895. • Servan-Schreiber D., Bruno R.M., Carter, C. S., &Cohen D., (1998) “Dopamine and the mechanisms of cognition: Part1. A neural network model predicting dopamine effects on selective attention”, Biological Psychiatry, 43, 713-722. • Stroop, J., (1953) “Studies of interference in serial verbal reactions”. Journal of Experimental Psychology, 18, 643-662. • Suri R.E., Bargas, J., & Arbib M.A., (2001) “Modeling functions of striatal dopamine modulation in learning and planning”, Neuroscience, 103, 65-85. • Taylor J.G., & Taylor N.R., (2000) “Analysis of recurrent cortico-basal ganglia-thalamic loops for working memory”, Biological Cybernetics, 82, 415-432. • Taylor N. R., & Taylor J.G., (2000) “ Hard-wired models of working memory and temporal sequence storage and generation”, Neural Networks, 13, 201-224. • Tzschentke, T. M., (2001) “Pharmacology and behavioural pharmacology of the mesocortical dopamine system”, Progress in Neurobiology, 63, 241-320. (34 (2 Mayıs’da))

  24. teşekkürler

  25. Daha fazla denklem isterseniz

More Related