Download
teoria da resposta ao item conceitos modelos e aplica es n.
Skip this Video
Loading SlideShow in 5 Seconds..
TEORIA DA RESPOSTA AO ITEM: Conceitos, Modelos e Aplicações PowerPoint Presentation
Download Presentation
TEORIA DA RESPOSTA AO ITEM: Conceitos, Modelos e Aplicações

TEORIA DA RESPOSTA AO ITEM: Conceitos, Modelos e Aplicações

572 Vues Download Presentation
Télécharger la présentation

TEORIA DA RESPOSTA AO ITEM: Conceitos, Modelos e Aplicações

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. TEORIA DA RESPOSTA AO ITEM: Conceitos, Modelos e Aplicações Dalton F. Andrade Departamento de Informática e Estatística – UFSC dandrade@inf.ufsc.br www.inf.ufsc.br/~dandrade IASI - X Seminario de Estadística Aplicada – Rosario 2006 martes 11-13 y 14-16 miércoles 8:30-10:30

  2. Tópicos • Introdução: Estatística em Avaliação Educacional • Teoria da Resposta ao Item - TRI: Conceitos Principais Modelos Aplicações em Educação e outras áreas • Estimação na TRI e outros modelos • Equalização • Construção e interpretação da escala de proficiência • Aspectos computacionais

  3. Referências iniciais: TRI • Lord, F.M., Norvick, M.R. (1968). Statistical Theories of Mental Test Score. Reading: Addison-Wesley • Lord, F.M. (1980). Applications of Item Response Theory to Practical Testing Problems. Hillsdale: Lawrence Erlbaum Associates • Hambleton, R.K., Swaminathan, H., Rogers, H.J. (1991). Fundamentals of Item Response Theory. Newburry Park: Sage Publications. • Andrade, D.F., Tavares, H.R., Cunha, R.V. (2000). Teoria da Resposta ao Item: Conceitos e Aplicações. São Paulo: Associação Brasileira de Estatística.

  4. Introdução: Estatística em Avaliação Educacional • Sistema Nacional de Avaliação da Educação Básica –SAEB (http://www.inep.gov.br/basica/saeb/ • Planejamento • Amostragem • Medida de Proficiência • Estudo de Fatores Associados - HLM

  5. Introdução: Estatística em Avaliação Educacional • Foco nas gestões dos sistemas educacionais • Realizado desde 1990. A partir 1995, passou a fazer uso da TRI. • 1995, 1997, ..., 2003, 2005 (em análise). • 4a. e 8a. séries do Ensino Fundamental e 3a. Série do Ensino Médio. • Disciplinas: Português, Matemática, ... • Amostra de estudantes • Proficiência do estudante • Fatores Associados: como características dos estudantes, professores e escolas estão relacionadas com a proficiências dos estudantes

  6. Introdução: Estatística em Avaliação EducacionalProvas/Planejamento • O número de itens (questões) requerido pelos especialistas, para cada série e disciplina, é maior do que um estudante pode responder em 2 horas. • Equalização: obter resultados comparáveis (mesma escala) para as 4a., 8a. and 3a. séries e também ao longo do tempo. • Matemática, 3a. série: 169 itens. - 13 conjuntos com 13 itens cada (169=132) - Provas: cadernos de provas com 3 conjuntos, total de 39=3x13 itens - Total de 26 cadernos de provas - Itens de 8a. Série e também de anos anteriores

  7. Cadernos de Provas: Planejamento emBlocos Incompletos Balanceados - BIB Estudantes de mesma série respondem diferentes cadernos de provas, mas os cadernos de provas possuem itens comuns

  8. Introdução: Estatística em Avaliação EducacionalAmostragem • Dados de 2002 • Amostragem por conglomerado (escola) em dois estágios, dentro de cada estrato: Estágio 1: escola Estágio 2: estudantes das escolas selecionadas

  9. Introdução: Estatística em Avaliação EducacionalMedindo a Proficiência • Medir a proficiência do estudante. • Obter resultados comparáveis entre séries (4a., 8a. EF e 3a. EM). • Obter resultados comparáveis entre anos para a mesma série. • Diferentes provas entre anos, entre séries e entre estudantes de uma mesma série. • Teoria Clássica (TC) • Teoria da Resposta ao Item (TRI)

  10. Introdução: Estatística em Avaliação EducacionalAnálise de Fatores Associados • Como as características dos estudantes, professores e escola estão relacionadas com a proficiência dos estudantes. • Modelos de regressão com estruturas especiais de dependência. • Referências Básicas: GOLDSTEIN, H. (2003). Multilevel Statistical Models. 3a ed. London: Edward Arnold. RAUDENBUSH, S. W. e BRYK, A. S. (2002). Hierarchical Linear Models. 2a ed. Newbury Park: Sage.

  11. Introdução: Estatística em Avaliação EducacionalAnálise de Fatores Associados • Modelo de regressão: Y = f(X1, ..., Xp, W1, ..., Wq) + Erro X: características do estudante (gênero,idade, anos de escolaridade dos pais, tempo dedicado aos estudos fora da escola,...) W: características da escola (tipo de escola, localização, práticas pedagógicas, atitudes do diretor,...) Erro: independente, distribuição normal

  12. Introdução: Estatística em Avaliação EducacionalAnálise de Fatores Associados • Modelagem hierárquica/multinível Model nulo: Nível 1: estudante (i) proficij = 0j + eij eij: i.i.d. N(0,σ2) Nível 2: escola (j) 0j = 00 + u0j u0j: i.i.d. N(0,τ00), independente de eij Variância total : σ2 + τ00 , Cov(proficij, profici’j) = τ00

  13. Introdução: Estatística em Avaliação EducacionalAnálise de Fatores Associados • Alguns resultados do SAEB 2001

  14. Introdução: Estatística em Avaliação EducacionalAnálise de Fatores Associados • Alguns resultados do SAEB 2001 : Matemática

  15. Teoria Clássica • Baseada no escore total: número de acertos • Seus parâmetros dependem do grupo de respondentes • Parâmetro de dificuldade: proporção de acertos • Correlação bisserial • Parâmetro de discriminação: proporção de acertos grupo superior – grupo inferior • Como comparar/representar proporção acertos aluno 4a. série com a proporção de acertos aluno 5a. Série ? • Modelo: X = T + Erro

  16. Teoria da Resposta ao Item (TRI) 1. O foco é no item e não no escore total, como na Teoria Clássica. 2. São modelos que relacionam um ou mais traços latentes de um indivíduo, com a probabilidade dele apresentar uma certa resposta ao item. 3. Traço Latente: proficiência/habilidade em Matemática, Português, Ciências etc. 4. Baseado nas respostas dadas por um ou mais grupos de indivíduos, a um conjunto de itens, desejamos: - estimar os parametros dos itens (processo de calibração) - estimar as proficiências dos indivíduos - estimar a proficiência média de um ou mais grupos de indivíduos

  17. Teoria da Resposta ao Item (TRI) 5. A probabilidade de uma certa resposta a um item é modelada como função da proficiência do indivíduo e os parâmetros que representam algumas propriedades dos item. 6. Modelo acumulativo: quanto maior a proficiência do indivíduo, maior a probabilidade de uma resposta correta. 7. Propriedade da invariância: os parâmetros dos itens e as proficiências são invariantes, exceto pela escolha da escala (métrica).

  18. Modelos da TRI Os modelos dependem do tipo do item Itens do tipo certo/errado (dicotômico) ou corrigido como certo/errado (múltipla escolha, aberto) Modelo Logístico : unidimensional, um grupo, com 1 (Rasch), 2 ou 3 parâmetros.

  19. Modelo Logístico de 3 Parâmetros • a: parâmetro de discriminação • b: parâmetro de dificuldade (medido na mesma escala da proficiência) • c: parâmetro de acerto casual (probabilidade de que um estudante com baixa proficiência responda corretamente)

  20. Modelo Logístico de 3 Parâmetros

  21. Modelos da TRI Modelo Nominal : modela todas as categorias de resposta s=1,2, ...,mi. onde ais e bis são como no modelo logístico.

  22. Modelo Nominal

  23. Modelos da TRI Modelo de Resposta Gradual (categorias ordinais)

  24. Modelo de Resposta Gradual

  25. Outros Modelos da TRI • Modelo de Crédito Parcial : Modelo de resposta gradual sem o parâmetro a (Rasch). • Modelo de Escala Gradual: Modelo de resposta gradual com bis = bi – ds • Modelo dos Grupos Múltiplos (dois ou mais grupos). Bock, R.D., Zimowski, M.F. (1997). Multiple group IRT. In Handbook of Modern Item Response Theory. W.J. van der Linden and R.K. Hambleton Eds. New York: Springer-Verlag

  26. Aplicações em Avaliação Educacional PISA – Programme for International Student Assessment (Programa Internacional de Avaliação de Alunos) - anos: 2000(Leitura), 2003(Matemática), 2006(Ciências) - alunos com 15 anos (independente da série) - itens de múltipla escolha e itens abertos (corrigidos 0,1,2) - modelo de 1 parâmetro (somente parâmetro b: dificuldade) - esquema BIB - 32 países em 2000 – OCDE + convidados - http://www.inep.gov.br/internacional/pisa/

  27. Aplicações em Avaliação Educacional Públicas: Estaduais/Municipais SARESP (São Paulo) SPAECE (Ceará) SAEPE (Pernambuco) Município do Rio de Janeiro Município de São Paulo Privadas SIMA: Sistema Marista de Avaliação Fundação Bradesco

  28. Outras Aplicações da TRI em Educação Educação Estatística θ: extensão do uso de estatística no local de trabalho. Questionário com 46 técnicas estatísticas e métodos de pesquisa (itens). Harraway, J.A. and Barker, R.J. (2005). Statistics in the workplace: a survey of use by recent graduates with higher degrees. Statistics Education Research Journal, 4(2), 43-58, http://www.stat.auckland.ac.nz/serj Harraway, J.A., Andrade, D.F.(2006). An item response analysis of statistics use in the workplace. (apresentado no ICOTS7, Salvador)

  29. Outras Aplicações da TRI em Educação Educação Médica Avaliar o desempenho do aluno de curso de medicina Prova realizada uma vez por ano por todos os alunos (1a.-6a.) Comissão de avaliação do curso de medicina da UEL, PR: Sakai, M., Mashima, D., Ferreira Filho, O.F., Matsuo, T.

  30. Aplicações da TRI em outras áreas Qualidade de Vida Mesbah, M., Cole, B.F. and Lee, M.L.T.(2002). Ed. Statistical methods for quality of life studies: design, measurements and analysis. Boston: Kluwer Academic Publishers

  31. Aplicações da TRI em outras áreas HIT (Headache Impact Test): medir o impacto causado por dor de cabeça em diferentes situações (no trabalho, em casa e em ocasiões sociais). Ware, J.E., Bjorner, J. B., Kosinski, M. (2000). Practical Implications of Item Response Theory and Computerized Adaptive Testing. A Brief Summary of Ongoing Studies of Widely Used Headache Impact Scales. Medical Care, v.38. www.amihealthy.com

  32. Aplicações da TRI em outras áreas Medir o Grau de Satisfação do Consumidor Costa, M.B.F. (2001). Técnica derivada da teoria da resposta ao item aplicada ao setor de serviços. Dissertação de Mestrado – PPGMUE/UFPR Bortolotti, S.L.V. (2003). Aplicação de um modelo de desdobramento da teoria da resposta ao item – TRI. Dissertação de Mestrado. EPS/UFSC. Bayley, S. (2001). Measuring customer satisfaction. Evaluation Journal of Australasia, v. 1, no. 1, 8-16.

  33. Aplicações da TRI em outras áreas Psiquiatria/Psicologia Escalas psiquiátricas: Inventário de depressão de Beck (BDI) Escala de sintomas Depressivos (CES-D) Escala de rastreamento de dependência de sexo (ERDS) Schaeffer, N. C. (1988). An Application of Item Response to the Measurement of Depression.Sociological Methodology, 18, 271–307. Embretson, S. E. and Reise, S. P. (2000). Item response theory for psychologists. New Jersey: Lawrence Erlbaum Associates, Inc., Publishers..

  34. Aplicações da TRI em outras áreas Psiquiatria/Psicologia Coleman, M. J., Matthysse, S., Levy, D. L., Cook, S., Lo, J. B. Y.,Rubin, D. B. and Holzman, P. S. (2002). Spatial and object working memory impairments in schizophrenia patients: a bayesian item-response theory analysis. Journal of Abnormal Psychology, 111, number 3, 425-435. Hays, R., Morales, L. S. e Reise, S. P. (2000). Item response theory and health outcomes measurement in the 21st century, Medical Care, v.38. Kirisci, L., Hsu, T. C. e Tarter, R. (1994). Fitting a two-parameter logistic item response model to clarify the psychometric properties of the drug use screening inventory for adolescent alcohol and drug abusers, Alcohol Clin. Exp. Res 18: 1335–1341.

  35. Aplicações da TRI em outras áreas Psiquiatria/Psicologia Langenbucher, J. W., Labouvie, E., Sanjuan, P. M., Bavly, L., Martin, C. S. e Kirisci, L. (2004). An application of item response theory analysis to alcohol, cannabis and cocaine criteria in DSM-IV, Journal of Abnormal Psychology 113: 72–80. Yesavage JA, Brink TL Rose TL et al. (1983). Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiat Res, 17:37-49.

  36. Aplicações da TRI em outras áreas Nutrição Diagnóstico de insegurança alimentar: Escala Brasileira de Medida de Segurança Alimentar - EBIA. Profa. Ana Maria Segall Corrêa – Dep. Medicina Preventiva e Social – FCM/UNICAMP Parke E. Wilde, Gerald J. and Dorothy R. Friedman (2004). Differential Response Patterns Affect Food-Security Prevalence Estimates for Households with and without Children. J. Nutr.134: 1910–1915.

  37. Aplicações da TRI em outras áreas Serviço Médico Jishnu Das, Jeffrey Hammer (2005). Which doctor? Combining vignettes and item response to measure clinical competence. Journal of Development Economics 78, 348-383 Genética Tavares, H. R.; Andrade, D. F.; Pereira, C.A. (2004) Detection of determinant genes and diagnostic via item response theory. Genetics and Molecular Biology, v. 27, n. 4, p. 679-685.

  38. Aplicações da TRI em outras áreas Gestão pela Qualidade Total Alexandre, J.W.C., Andrade, D.F., Vasconcelos, A.P. e Araújo, A.M.S.(2002). Uma proposta de análise de um construto para a medição dos fatores críticos da gestão pela qualidade através da teoria da resposta ao item. Gestão & Produção, v.9, n.2,p.129-141

  39. Estimação na TRI Independência entre as respostas dos estudantes. Independência entre as respostas dadas aos itens, para uma dada proficiência (local ou condicional). Baker, F.B., Kim, S-H.(2004). Item Response Theory: parameter estimation techniques. New Yook: Marcel Dekker, Inc. 2nd Edition.

  40. Estimação na TRI Uma população Máxima verossimilhança conjunta: onde U=(uij) é a matriz das respostas (NxI) e ξ é o vector(qIx1) dos parâmetros dos itens. Para o modelo logístico de 3 parâmetros, q=3.

  41. Estimação na TRI Máxima verossimilhança conjunta Precisamos encontrar os valores de θ and ξ que maximizam logL. Técnica Iterativa Newton-Raphson. Precisamos das derivadas parciais de 1a. e 2a. de logL com respeito a θ e ξ. Indeterminação: existem diferentes valores de θ e b que fornecem o mesmo valor de Pij. Uma solução: θ’s com média 0 e desvio padrão 1, escala (0,1)

  42. Estimação na TRI Máxima verossimilhança marginal A idéia básica é “libertar” o processo de estimação dos parâmetros dos itens de sua dependência de θ. Passo 1: estimação dos parâmetros dos itens. Passo 2: assumindo que as estimativas dos parâmetros dos itens são seus verdadeiros valores, estimamos os θ’s.

  43. Estimação na TRI Máxima verossimilhança marginal g(θ|η) é a distribuição de θ, com parâmetros η=(μ,σ2)’. Em geral, consideramos a normal padrão (μ =0 e σ=1).

  44. Estimação na TRI Máxima verossimilhança marginal As estimativas dos parâmetros dos itens são os valores de ξ que maximizam L(ξ,η). Algoritmo EM: U e θ são os dados completos, e U é dado observado. Assumindo ξ “conhecido”, voltamos para L(ξ,θ) = L(θ) e maximizamos para θ.

  45. Estimação na TRI Estimação Bayesiana Distribution a priori para a: Lognormal Distribution a priori para b: Normal Distribution a priori para c: Beta Fornece estimativas para todos os itens com u=1 or u=0 para todos os respondentes. A estimação por máxima verossimilhança não fornece. O mesmo para todos os respondentes que reponderam u=1 or u=0 para todos os itens.

  46. Estimação na TRI Duas ou mais populações Caso 1: Estimação para cada população em separado. requer uma “equalização a posteriori” para termos todos os resultados na mesma escala (métrica). Caso 2: Estimação envolvendo todas as populações ao mesmo tempo. Enfoque de Grupos Múltiplos: Estabelecemos uma das populações (grupos) como a referência, e obtemos todos os resultados na mesma escala. Por exemplo, estabelecemos a escala (0,1) para a população 1, e todos os resultados das outras populações estarão na mesma escala.

  47. Resultados do SAEB

  48. Modelos mais recentes da TRI Modelos Longitudinais :estudantes são acompanhados ao longo do tempo. Andrade, D.F. Tavares, H.R. ( 2005). Item response theory for longitudinal data: population parameter estimation. Journal of Multivariate Analysis 95,1– 22. Tavares, H.R., Andrade, D.F.(2006). Item response theory for longitudinal data; item and population ability parameters estimation. Test 15(1), 97-123.

  49. Exemplo Dados Longitudinais International Project on Mathematical Attainment - IPMA (Profa. Ednéia Consolin Poli – UEL) 1999 2000 2001 2002 2003 G1- 1ª. G1- 2ª. G2- 1ª. G1- 3ª. G2- 2ª. G1- 4ª. G2- 3ª. G2- 4ª. Professores 22 22 22 20 18 24 16 17 Alunos 568 557 512 395 309 307 282 270 Escolas 8 8 6 8 6 8 6 6 No. de itens 20 40 20 60 40 80 60 80 Fatores Assoc. - - - - - sim - sim

  50. Modelos mais recentes da TRI Modelando a Proficiência Média: curva de crescimento μk = f(tk,α) Tavares, H.R., Andrade, D.F.(2005). Growth curve models for longitudinal item response data. Presented at AERA2005 in Montreal.