1 / 22

CO 2 as a potential cooling medium

CO 2 as a potential cooling medium. for detector cooling at CERN. Abstract:. Project conception CO 2 overview Reverse Rankine Cycle Components Calculations / dimensioning Heat transmission Perspective. Project conception. Project definition. Today’s state of the art

Télécharger la présentation

CO 2 as a potential cooling medium

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CO2 as a potential cooling medium for detector cooling at CERN

  2. Abstract: • Project conception • CO2 overview • Reverse Rankine Cycle • Components • Calculations / dimensioning • Heat transmission • Perspective Project Tutor: Prof. Dr.-Ing. W. Czarnetzki M. Renner, S. Erhardt, S. Feghelm, J. Bürkle

  3. Project conception Project definition • Today’s state of the art • Existing applications and look for trends • CO2 as cooling medium • Laboratory and test facility design • Correlations for CERN Project Tutor: Prof. Dr.-Ing. W. Czarnetzki M. Renner, S. Erhardt, S. Feghelm, J. Bürkle

  4. Project conception Project structure Project Tutor: Prof. Dr.-Ing. W. Czarnetzki M. Renner, S. Erhardt, S. Feghelm, J. Bürkle

  5. Project conception Timetable Project Tutor: Prof. Dr.-Ing. W. Czarnetzki M. Renner, S. Erhardt, S. Feghelm, J. Bürkle

  6. CO2 overview • CO2sublimates under ambient pressure direct from solid to steam and reaches a temperature of -78,5°C. • CO2is color- and odorless, good soluble in water and not soluble with mineral oil. • CO2has a critical point at 31,06°C and 73,83 bar. • CO2is non flammable, non explosive, non corrosive and does not corrode sealant and lubricant. • 30vol.% (300'000 ppm) of CO2 in the air are lethal. CO2 overview Project Tutor: Prof. Dr.-Ing. W. Czarnetzki M. Renner, S. Erhardt, S. Feghelm, J. Bürkle

  7. Reverse Rankine Cycle Reverse Rankine Cycle Project Tutor: Prof. Dr.-Ing. W. Czarnetzki M. Renner, S. Erhardt, S. Feghelm, J. Bürkle

  8. Compressor (Bock) Condenser Evaporator Expansion valve Components of the laboratory CO2 cycle Components Project Tutor: Prof. Dr.-Ing. W. Czarnetzki M. Renner, S. Erhardt, S. Feghelm, J. Bürkle

  9. CO2 compressor Technical data: • 2-cylinder, semi-hermetic compressor • Limitation of use: • Operation point: Condensing temperature: 0°C Evaporation temperature: -40°C • Cooling capacity at operation point: 6058 W • Attachment: continuous speed control Components HGX12P/60-4 CO2 Project Tutor: Prof. Dr.-Ing. W. Czarnetzki M. Renner, S. Erhardt, S. Feghelm, J. Bürkle

  10. Components • Condenser • Evaporator • Throttle valve • Reservoir All elements will be appointed over one company. Components Project Tutor: Prof. Dr.-Ing. W. Czarnetzki M. Renner, S. Erhardt, S. Feghelm, J. Bürkle

  11. CO2 Reverse Rankine Cycle in the T,s-diagram 1-2: Isentropic compaction 2-3: Isobar condensation 3-4: Isenthalpe choke 4-1: Isobar evaporation Calculation / dimensioning Project Tutor: Prof. Dr.-Ing. W. Czarnetzki M. Renner, S. Erhardt, S. Feghelm, J. Bürkle

  12. Calculation result • It is a obvious difference to the ideal process expected. • The compressor don’t work isentropic. • The condenser has to provide a minimum heat flow of 9 kW. • The evaporator has to provide a minimum heat flow of 6,5 kW. Calculation / dimensioning Project Tutor: Prof. Dr.-Ing. W. Czarnetzki M. Renner, S. Erhardt, S. Feghelm, J. Bürkle

  13. Heat transmission Detector cooling with CO2 cycle • Pilot study • Test state • Liquid CO2 through thin and heated capillary tubes • Measuring of heat transmission characteristics • Identify the formula coherences • Correlate formula with the measured data Project Tutor: Prof. Dr.-Ing. W. Czarnetzki M. Renner, S. Erhardt, S. Feghelm, J. Bürkle

  14. Heat transmission Flow Boiling Project Tutor: Prof. Dr.-Ing. W. Czarnetzki M. Renner, S. Erhardt, S. Feghelm, J. Bürkle

  15. Heat transmission Correlations • Heat transmission separated into two independent rates: Convective Heat transmission heat transmission in nucleate boiling Project Tutor: Prof. Dr.-Ing. W. Czarnetzki M. Renner, S. Erhardt, S. Feghelm, J. Bürkle

  16. Yoon • Horizontal microtubes Critical quality • Constant heat flux below xcr above xcr Project Tutor: Prof. Dr.-Ing. W. Czarnetzki M. Renner, S. Erhardt, S. Feghelm, J. Bürkle

  17. Steiner - Horizontal • Horizontal thick-walled tubes • Constant heat flux • Start of nucleate boiling: Project Tutor: Prof. Dr.-Ing. W. Czarnetzki M. Renner, S. Erhardt, S. Feghelm, J. Bürkle

  18. Heat transmission Steiner - Horizontal • Convective • Nucleate boiling Project Tutor: Prof. Dr.-Ing. W. Czarnetzki M. Renner, S. Erhardt, S. Feghelm, J. Bürkle

  19. Heat transmission Steiner - Vertical • Convective • Nucleate boiling no mass flux no quality Project Tutor: Prof. Dr.-Ing. W. Czarnetzki M. Renner, S. Erhardt, S. Feghelm, J. Bürkle

  20. Steffen Grohmann – Horizontal microtubes • Working fluid: Argon • No mass flux and quality dependence in microtubes Strong influence of surface tension in microtubes  Phase seperation occures less likely • αB based on VDI-Wärmeatlas correlations for vertical tubes Project Tutor: Prof. Dr.-Ing. W. Czarnetzki M. Renner, S. Erhardt, S. Feghelm, J. Bürkle

  21. Options for future work • Ordering the components (condenser, evaporator). • Setup and launch of the cooling machine in the laboratory. • Tests regarding the heat transmission and conventional cycle. • Calculation of the cycle based on the measured data. • Optimization of the cooling machine. Perspective Project Tutor: Prof. Dr.-Ing. W. Czarnetzki M. Renner, S. Erhardt, S. Feghelm, J. Bürkle

  22. Future collaboration with CERN Experiments on heat transmission: • with several tubes types • in a evaporation temperature range from -25°C to -50°C • in a pressure range from 7bar to 40bar Correlation of the measurements Perspective Project Tutor: Prof. Dr.-Ing. W. Czarnetzki M. Renner, S. Erhardt, S. Feghelm, J. Bürkle

More Related