1 / 24

ENCODING NON LINEAR MIXED EFFECTS MODEL

ENCODING NON LINEAR MIXED EFFECTS MODEL. M arc Lavielle INRIA Saclay. EBI, June 20th, 2011. Population approach & mixed effects model. Some examples of PK/PD data. Daily seizure counts (epilepsy). Viral load CD4 count.

quanda
Télécharger la présentation

ENCODING NON LINEAR MIXED EFFECTS MODEL

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ENCODING NON LINEAR MIXED EFFECTS MODEL Marc Lavielle INRIA Saclay EBI, June 20th, 2011

  2. Population approach & mixed effects model

  3. Some examples of PK/PD data Daily seizure counts (epilepsy) Viral load CD4 count

  4. Some examples of PK/PD data Daily seizure counts (epilepsy) Viral load CD4 count

  5. The statistical model of the observations

  6. Statistical model for continuous data • The model of the observations y is completely defined by : • - The prediction f • The standard deviation g • The distribution of the residual errors e

  7. Statistical model for continuous data The statistical model prediction = f standard deviation = g distribution = normal

  8. Statistical model for continuous data Any application dedicated to a giventaskshouldbe able to understand/interpretthis description of the model The statistical model prediction = f standard deviation = g distribution = normal

  9. Statistical model for continuous data Any application dedicated to a giventaskshouldbe able to understand/interpretthis description of the model The statistical model prediction = f standard deviation = g distribution = normal

  10. Statistical model for continuous data Any application dedicated to a giventaskshouldbe able to understand/interpretthis description of the model The statistical model prediction = f standard deviation = g distribution = normal

  11. Statistical model for continuous data Any application dedicated to a giventaskshouldbe able to understand/interpretthis description of the model The statistical model prediction = f standard deviation = g distribution = normal

  12. Statistical model for time-to-event data The statistical model hazard = l

  13. Statistical model for time-to-event data The statistical model hazard = l

  14. Statistical model for discrete data P(Y=k) , k=1,2,..K Categorical data: Count data: distribution = poisson parameter = lambda Y ~ parametric distribution example: Y ~Poisson(l)

  15. The statistical model of the individual parameters

  16. Statistical model of the individual parameters General model:

  17. Statistical model of the individual parameters General model: Linear model:

  18. Statistical model of the individual parameters - Example The statistical model distribution = log-normal standard deviation = omega covariate= c

  19. Statistical model of the individual parameters - Example The statistical model distribution = log-normal standard deviation = omega covariate= c

  20. Coding non linear mixed effects models with MONOLIX

  21. The main Graphical User Interface of MONOLIX

  22. Defining the statistical model with the MONOLIX GUI • All the information related to the statistical model is stored: • in a Matlab structure • in a XML file • in a « human-readable » script file

  23. <projectname="theophylline_project.xml"> <covariateDefinitionList> <covariateDefinitioncolumnName="WEIGHT" name="t_WEIGHT" transformation="log(cov/70)" type="continuous"/> <covariateDefinitioncolumnName="SEX" type="categorical"> <groupList> <group name="F" reference="true"/> <group name="M"/> </groupList> </covariateDefinition> </covariateDefinitionList> <data columnDelimiter="\t" headers="ID,DOSE,TIME,Y,COV,CAT" uri="%MLXPROJECT%/theophylline_data.txt"/> <models> <statisticalModels> <parameterList> <parametername="ka" transformation="L"> <interceptinitialization="1.000000"/> </parameter> <parametername="V" transformation="L"> <interceptinitialization="1.000000"/> <betaList> <beta covariate="t_WEIGHT" initialization="0"/> </betaList> <variability initialization="1.000000" level="1.000000" levelName="IIV"/> </parameter> <parametername="Cl" transformation="L"> <interceptinitialization="1.000000"/> <variability initialization="1.000000" level="1.000000" levelName="IIV"/> </parameter> </parameterList> <residualErrorModelList> <residualErrorModel alias="const" output="1.000000" outputName="concentration"> <parameterList> <parameter initialization="1.000000" name="a"/> </parameterList> </residualErrorModel> </residualErrorModelList> </statisticalModels>

  24. Coding the (statistical) model with MLXTRAN $DESCRIPTION PK of theophylline $FILE D:/Myproject/theophylline_data.txt $VARIABLES ID, TIME, AMT, OBS use=DV,WT, SEX use=cov type=cat, LW70 = log(WT/70) use=cov $INDIVIDUAL default distribution=log-normal, ka iiv=no, V cov=LW70, Cl, $EQUATION Cc=PKMODEL(ka,V,Cl) $OBSERVATION Concentration type=continuous pred=Cc err=constant

More Related