1 / 60

Chapter 3 – Two Dimensional Motion and Vectors

Chapter 3 – Two Dimensional Motion and Vectors. 3 – 1: Objectives. Distinguish between a scalar and a vector Add and subtract vectors using the graphical method Multiply and Divide Vectors by Scalars. Every physical quantity is either a scalar or a vector quantity.

redell
Télécharger la présentation

Chapter 3 – Two Dimensional Motion and Vectors

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 3 – Two Dimensional Motion and Vectors

  2. 3 – 1: Objectives • Distinguish between a scalar and a vector • Add and subtract vectors using the graphical method • Multiply and Divide Vectors by Scalars

  3. Every physical quantity is either a scalar or a vector quantity • Scalar: a physical quantity that can be completely specified by its magnitude (a number) with appropriate units. • Examples: mass, speed, distance and volume • Vector: a physical quantity that has both magnitude and direction • Examples: position, displacement, velocity, and acceleration

  4. Book uses boldface type to represent vector quantities v a x ∆x Handwritten – place a “vector symbol” over the variable v a x ∆x Notation used to represent vector quantities

  5. 50 m/s, East 25 m/s, East Vectors can be represented by diagrams • Arrows are used to show a vector quantity that points in the direction of the vector. • The length of the arrow represents the magnitude Notice, the 50 m/s vector is twice as long as the 25 m/s vector

  6. Draw 2 vectors that represent 10 m east and 15 m west Notice: The arrow head is pointing in the required direction and the lengths are drawn to a chosen scale where each unit represents 5 m.

  7. Vector Addition – Graphical Method • 1. Vectors to be added are physically placed tip – to – tail (the tip of one vector touches the tail of the next vector) in any order • NOTE: Within a diagram, vectors can be moved (translated) for the purpose of vector addition, as long as the direction and the length remain the same.

  8. Resultant Vector • the sum of 2 or more vectors • the solution to a vector addition problem • also called vector sum

  9. Finding a Resulant Vector • Found graphically by drawing another vector that begins at the tail of the first vector and ends at the tip of the last vector that is being added. --NOT TIP-TO-TAIL! Beginning to end.

  10. Tail – to - tail Tip – to - tail Graphical Vector Addition in One - Dimension Tip – to - tip NOTES: technically if all vectors are in one – dimension, they would be drawn on top of each other, these are separated slightly for clarity. The magnitude of the resultant vector can be found by measuring the length and converting the number to the proper units using the given scale. The direction is shown by the arrow tip.

  11. The diagram shown on the previous page shows 2 displacement vectors that were being added (10 m east and 15 m west) • The resultant vector is obviously 5 m west. • In one – dimension it is certainly easier to use the magnitude and a +/- sign for direction to add the vectors • Ex. (+10 m) + (-15 m) = -5 m • The resultant vector is 5 m to the west!

  12. Graphically Add the following 3 displacement vectors (1-dimensional) • Choose an appropriate scale and draw the graphical solution to this vector addition problem 225 m north, 175 m south, and 125 m south

  13. Graphical Vector Addition in 2 Dimensions • The graphical procedure is the same as in 1 – dimension • Vectors to be added are physically placed tip – to – tail (the tip of one vector touches the tail of the next vector) in any order • The resultant vector is found graphically by drawing another vector that begins at the tail of the first vector and ends at the tip of the last vector

  14. Plus vector 2 Resultant vector Vector 1

  15. The magnitude of the resultant vector can be found by measuring the length and converting the number to the proper units using the given scale. (exactly the same as in 1 – dimension) • The direction is described differently. • The direction of a 2 – dimensional vector is graphically determined with a protractor and is measured counter-clockwise (CCW) from the +x - axis

  16. Plus vector 2 Resultant vector 2. Measure the direction CCW from the + x - axis Vector 1 1. Place an x/y coordinate system at THE TAIL of your resultant vector θ

  17. Important comment! • If given a vector diagram where the vectors are not drawn tip - to – tail, you can move a vector in a diagram so that you can set up a tip – to – tail situation! Proceed as before.

  18. Vector 2 Vector 1 Vector 1 Resultant Vector Vector 2

  19. Hints about vector addition • When adding vectors: • 1. The vectors must represent the same physical quantity (you can’t add velocity and displacement) • 2. The vector quantities must have the same units (you can’t add m and km, you must convert first)

  20. Resultant Vector • The resultant vector represents a SINGLE vector that produces the same RESULT as the other vectors (addends) acting together

  21. Example (Displacement) Walking 3 m east and then 4 m north puts you at the same final position as walking 5 m at an angle of 53º 4 m 5 m 53º 3 m

  22. Sample problem 140 m 120 m Find the resultant displacement.

  23. A person rows due east across the Delaware River at 8.0 m/s. The current carries the boat downstream (south) at 2.5 m/s. What is the person’s resultant velocity?

  24. Graphical Vector Addition Practice • Worksheet • Rulers • Protractors

  25. Review Problems • Two ropes are tied to a tree to be cut down. The first rope pulls on the tree with a force of 350 N west. The second pulls at 425 N at 320 degrees. What’s the resultant force? • A person drives through town 6 blocks north, then 3 blocks east. They run into a one way street and have to travel 1 block south to go 2 more blocks east. Finally, the person parks and walks 2 blocks north to the destination. What is the person’s displacement?

  26. Part II

  27. Properties of Vectors • 1. Vectors may be translated in a diagram (moved parallel to themselves) • 2. Vectors may be added in any order (Vector addition is commutative) • 3. To subtract a vector, add its opposite. • The opposite of a vector has the same magnitude and points in the opposite direction. (+/- 180º) • 4.Multiplying or dividing vectors by scalars results in vectors

  28. 2. Vectors may be added in any order (Vector addition is commutative)

  29. 3. To subtract a vector, add its opposite. A - B A + (-B) A A -B B

  30. 4.Muliplying or dividing vectors by scalars results in vectors A 2A A/2 Notice: The magnitude is multiplied or divided but the direction remains the same. A ball is thrown 25 m at an angle of 30º Two times this displacement vector is 50 m at an angle to 30º

  31. Sample problems • Given the following vectors: A = 50 m South B = 80 m East C = 65 m @ 210° D = 110 m @ 140° Find: • A – C 2. 3D + B -2A 3. ½ B – 4A

  32. 3-2 Vector Operations • Objectives: • Identify appropriate coordinate systems for solving problems with vectors. • Apply the Pythagorean Theorem and tangent function to calculate the magnitude and direction of a resultant vector. • Resolve vectors into components using the sine and cosine functions. • Add vectors that are not perpendicular

  33. Geometry / Trigonometry Review • Pythagorean Theorem – The square of the hypotenuse of a right triangle is equal to the sum of the squares of its legs • c2 = a2 + b2 c a b

  34. B Hypotenuse (c) Leg (a) A C Leg (b) • Trigonometric Ratios: Adjacent side Opposite side Opposite side Cos θ = Tan θ = Sin θ = hypotenuse Adjacent side hypotenuse

  35. c b 20º a Using Trig. Ratios • Given an acute angle of a right triangle, to find the ratio of 2 specific sides of the triangle, enter the appropriate function (sine, cosine, tangent) of the angle in your calculator. Sin(20º)=b/c Cos(20º) = a/c Tan(20º) = b/a

  36. c θ b a • To find an acute angle of a right triangle, enter the inverse of the appropriate function of the ratio of the 2 corresponding sides. θ = sin-1(a/c) θ = cos-1(b/c) θ = tan-1(a/b)

  37. Trigonometry Review Practice Worksheet

  38. Part III

  39. Resultant, R B θ A Vector Addition – Analytical Method • Case #1 (easiest method): • Adding 2 Vectors that are perpendicular R = magnitude of the resultant vector R = A2 + B2 The angle, θ, of the triangle can be found using the tan-1 function and THEN CONVERT it to the direction measured CCW from the +x - axis

  40. Example for Case #1 • Add the following 2 velocity vectors. 5 m/s west (180º) and 8 m/s north (90º) R2 = 52 + 82 R = 9.4 m/s θ = tan-1 (8/5) θ = 58º The direction (measured CCW from the +x – axis) is found by subtracting 180 – 58 = 122º R 8 m/s θ 5 m/s R = 9.4 m/s <122º

  41. Case #2: Adding more than 2 perpendicular vectors • First, find the vector sum of all of the horizontal vectors, call this Rx. • Second, find the vector sum of all of the vertical vectors, call this Ry. • Find the vector sum of Rx andRy • By following the method from Case #1

  42. Example of Case #2 • A boyscout walks 8 m east, 2 m north, 6 m east, 10 m south, 3 m east, 5 m south and 3 m west.

  43. Horizontal Vectors Vertical Vectors + 8m + 6m + 3m - 3m • + 2m • 10m • 5m -13 m +14 m

  44. Rx θ Ry R R2 = 142 + 132 R = 19.1 m θ = tan-1 (13/14) θ = 43º The direction (measured CCW from the +x – axis) is found by subtracting 360 – 43 = 317º R = 19.1 m <317º

  45. Vector Resolution (opposite process of adding 2 vectors) • Any vector acting at an angle can be replaced with 2 vectors that act perpendicular to each other, one horizontal and one vertical. (The 2 vectors working together are equivalent to the single vector acting at an angle.)

  46. 25 m Step 1 • Sketch the given vector with the tail located at the origin of an x-y coordinate system. (Ex. 25 m at an angle of 36º) 36º

  47. 25 m Step 2 • Draw a line segment from the tip of the vector perpendicular to the x-axis 36º Notice, you now have a right triangle with a known hypotenuse and known angle measurements

  48. 25 m Step 3 • Replace the perpendicular sides of the right triangle with vectors drawn tip – to - tail

  49. 25 m Step 4 • Use sine and cosine functions to find the horizontal and vertical components of the given vector. Ry 36º Cos(36) = Rx/25 Rx = 25cos(36) Rx = 20.2 m sin(36) = Ry/25 Ry = 25sin(36) Ry = 14.7 m Rx

  50. Important • Remember that the 2 components acting together gives the same result as the single vector acting at an angle. • ****The 2 components can be used to REPLACE the single vector****

More Related