1 / 19

MATRIKS

MATRIKS . INVERS MATRIKS ( dengan adjoint ). Adjoint. Definisi : Jika A sebarang matriks n x n dan C ij adalah kofaktor a ij , maka matriks dinamakan matriks kofaktor A Transpose dari matriks kofaktor adalah adjoint ( sering ditulis adj ( nama_matriks )

reuben
Télécharger la présentation

MATRIKS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MATRIKS INVERS MATRIKS (denganadjoint)

  2. Adjoint • Definisi: • Jika A sebarangmatriks n x n danCijadalahkofaktoraij, makamatriks dinamakanmatrikskofaktor A • Transpose darimatrikskofaktoradalahadjoint (seringditulisadj(nama_matriks) • Transpose matrikskofaktor A adalahAdjoint A (adj(A))

  3. Adjoint • Contoh: • Carinilaikofaktor • C11 = (-1)1+1 (6*0 – 3*(-4)) = 12 • C12 = (-1)1+2 (1*0 – 3*2) = 6 • C13 = (-1)1+3 (1*(-4) – 6*2) = -16 • C21 = (-1)2+1 (2*0 – (-1)*(-4)) = 4 • C22 = (-1)2+2 (3*0 – (-1)*2) = 2 • C23 = (-1)2+3 (3*(-4)– 2*2) = 16 • C31 = (-1)3+1 (2*3 – (-1)*6) = 12 • C32 = (-1)3+2 (3*3 – (-1)*1) = -10 • C33 = (-1)3+3 (3*6 – 2*1) = 16 • MatriksKofaktor A • Transpose matrikskofaktor A adalahAdjoint A (adj(A))

  4. InversMatrikdenganAdjoint • Rumus:

  5. Contoh • Denganadjoint, carilahInversdari

  6. Contoh-penyelesaian • Carinilaikofaktor • C11 = (-1)1+1 (1*1 – 4*(-2)) = 9 • C12 = (-1)1+2 (0*1 – 4*2) = 8 • C13 = (-1)1+3 (0*(-2) – 1*2) = -2 • C21 = (-1)2+1 ((-1)*1 – 2*2) = 5 • C22 = (-1)2+2 (3*1 – 2*2) = -1 • C23 = (-1)2+3 (3*(-2) – (-1)*2) = 4 • C31 = (-1)3+1 ((-1)*4 – 2*1) = -6 • C32 = (-1)3+2 (3*4 – 2*0) = -12 • C33 = (-1)3+3 (3*1 – (-1)*0) = 3 • MatriksKofaktor A • Transpose matrikskofaktor A adalahAdjoint A (adj(A))

  7. Contoh-penyelesaian • CariDeterminannyadenganekspansikofaktorbarispertama: • det(A) = a11*c11+ a12*c12 a13*c13 = 3*9 + (-1)*8 + 2*(-2)  27 – 8 – 4 = 15

  8. METODE CRAMER

  9. Metode Cramer • untukmenyelesaikanpersamaan linier denganbantuandeterminan • SYARAT: nilaideterminan 0 (nol)

  10. Metode Cramer • jikaAx = badalahsebuahsistem linear n yang tidakdiketahuidandet(A)≠ 0 makapersamaantersebutmempunyaipenyelesaian yang unik • dimanaAjadalahmatrik yang didapatdenganmenggantikolomjdenganmatrik b

  11. LangkahMetode Cramer • Diketahui SPL: • Ubahterlebihdahuludalambentukmatriks • pisahkanmatriksuntukvariabeldankoefisiendisebelahkanansamadengan(=b)

  12. LangkahMetode Cramer • Diketahuimatriks A denganordo3x3, danmatrik b (matrikkolom) • Carideterminanmatriks A • Gantikolomdenganmatriks b • Gantikolompertamadenganmatriks b  • Gantikolomkeduadenganmatriks b  • Gantikolomketigadenganmatriks b 

  13. LangkahMetode Cramer • Carinilaideterminandarimatriksbaruhasilpenggantiankolomdenganmatriks b • Carinilai x1, x2dan x3denganrumusan:

  14. ContohSoal • Gunakanmetodecrameruntukmenyelesaikanpersoalandibawahini x1 + 2x3  = 6 -3x1 + 4x2 + 6x3 = 30 -x1 - 2x2 + 3x3  = 8

  15. PenyelesaianSoal • Bentukdalammatriks • Caridet(A), denganekspansibarispertama

  16. PenyelesaianSoal • Gantikolomdenganmatriks b • Carideterminanmasing-masing • denganekspansibarispertama

  17. PenyelesaianSoal • Gantikolomdenganmatriks b • Carideterminanmasing-masing • denganekspansibarispertama

  18. PenyelesaianSoal • Gantikolomdenganmatriks b • Carideterminanmasing-masing • denganekspansibarispertama

  19. PenyelesaianSoal • Carinilai x • Jadi, solusinya

More Related