1 / 40

Studying the strongly coupled N=4 plasma using AdS/CFT

Studying the strongly coupled N=4 plasma using AdS/CFT. Amos Yarom, Munich. Together with S. Gubser and S. Pufu. TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A. AdS/CFT. J. Maldacena. Calculating the stress-energy tensor. T .

roddy
Télécharger la présentation

Studying the strongly coupled N=4 plasma using AdS/CFT

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Studying the strongly coupled N=4 plasma using AdS/CFT Amos Yarom, Munich Together with S. Gubser and S. Pufu TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAA

  2. AdS/CFT J. Maldacena Calculating the stress-energy tensor T >> 1 N >> 1

  3. Calculating the stress-energy tensor • Anti-de-Sitter space. • Strings in Anti-de-Sitter space. • The energy momentum tensor via AdS/CFT. • Results.

  4. ds2 dz2 dy2 dx2 Flat space + dw2 ds2 dx2 dy2 + dz2 - dt2 ds2 = c2 dx2+c2 dy2+c2 dz2 = + y x  c x y  c y z  c z x z

  5. + 5d Anti de-Sitter space ds2 =L2 z-2 (dz2+dx2+dy2+dw2 - dt2) 0 z

  6. AdS5 black hole ds2 =L2 z-2 (dz2/(1-(z/z0)4)+dx2+dy2+dw2 - (1-(z/z0)4) dt2) ds2 = gdxdx 0 z0 z

  7. 1 ___ 20 z0 z Strings in AdS ds2 = gdxdx ______ √g ( X)2 dd SNG= s X() X(,t) 

  8. AdS5 CFT AdS/CFT J. Maldacena N=4 SYM plasma via AdS/CFT Vacuum Empty AdS5 gYM2 N L4/’2 L3/2 G5 N2 J. Maldacena hep-th/9711200

  9. AdS5 CFT T>0 N=4 SYM plasma via AdS/CFT Empty AdS5 Thermal state Vacuum AdS5 BH gYM2 N L4/’2 L3/2 G5 N2 Horizon radius Temperature J. Maldacena hep-th/9711200 E. Witten hep-th/9802150

  10. AdS5 CFT z0 AdS/CFT Endpoint of an open string on the boundary SNG Massive particle =0 J. Maldacena X J. Maldacena hep-th/9803002 Static ‘quarks’ using AdS/CFT 0 ? z

  11. AdS5 CFT z0 Endpoint of an open string on the boundary SNG Massive particle =0 X J. Maldacena hep-th/9803002 Moving ‘quarks’ using AdS/CFT 0 ? z

  12. AdS5 CFT z0 Endpoint of an open string on the boundary SNG Massive particle =0 X J. Maldacena hep-th/9803002 Moving ‘quarks’ using AdS/CFT 0 z

  13. AdS5 CFT z0 Extracting the stress-energy tensor using AdS/CFT 0 gmn|b <Tmn> E. Witten hep-th/9802150 z

  14. 0 AdS5 CFT z0 z Metric fluctuations AdS black hole Extracting the stress-energy tensor using AdS/CFT gmn|b <Tmn> E. Witten hep-th/9802150 ds2 = gdx dx g = gAdS-BH+h

  15. z0 The energy momentum tensor (Friess, Gubser, Michalogiorgakis, Pufu, hep-th/0607022) 0 g=gAdS+ h z

  16. Energy density for v=3/4 (Gubser, Pufu, AY, ArXiv: 0706.0213, Chesler, Yaffe, ArXiv: 0706.0368) Over energy Under energy

  17. v=0.75 v=0.58 v=0.25

  18. Small momentum approximations (Friess, Gubser, Michalogiorgakis, Pufu, hep-th/0607022)

  19. Small momentum approximations (Gubser, Pufu, AY, ArXiv: 0706.0213) 1-3v2 < 0 (supersonic) 1-3v2 > 0 (subsonic)

  20. Small momentum approximations (Gubser, Pufu, AY, ArXiv: 0706.0213)

  21. Small momentum approximations (Gubser, Pufu, AY, ArXiv: 0706.0213) s=1/3 cs2=1/3

  22. Energy density for v=3/4

  23. 0

  24. v=0.75 v=0.58 v=0.25

  25. Large momentum approximations (Gubser, Pufu hep-th: 0703090 AY, hep-th: 0703095)

  26. Large momentum approximations (Gubser, Pufu hep-th: 0703090 AY, hep-th: 0703095)

  27. The Poynting vector (Gubser, Pufu, AY, ArXiv: 0706.4307) S? S1 V=0.25 V=0.58 V=0.75

  28. Sound Waves ? Small momentum asymptotics (Gubser, Pufu, AY, ArXiv: 0706.4307)

  29. Small momentum asymptotics (Gubser, Pufu, AY, ArXiv: 0706.4307)

  30. The poynting vector (Gubser, Pufu, AY, ArXiv: 0706.4307) S1 S? V=0.25 V=0.58 V=0.75

  31. Energy analysis (Friess, Gubser, Michalogiorgakis, Pufu, hep-th/0607022, Gubser, Pufu, AY, ArXiv: 0706.0213, 0706.4307)

  32. z0 0 z Energy analysis (Friess, Gubser, Michalogiorgakis, Pufu, hep-th/0607022, Gubser, Pufu, AY, ArXiv: 0706.0213, 0706.4307) F (Herzog, Karch, Kovtun, Kozcaz, Yaffe, hep-th: 0605158, Gubser, hep-th: 0605182)

  33. Energy analysis (Friess, Gubser, Michalogiorgakis, Pufu, hep-th/0607022, Gubser, Pufu, AY, ArXiv: 0706.0213, 0706.4307)

  34. Energy analysis (Friess, Gubser, Michalogiorgakis, Pufu, hep-th/0607022, Gubser, Pufu, AY, ArXiv: 0706.0213, 0706.4307) S1

  35. Summary • AdS/CFT enables us to obtain the energy momentum tensor of the plasma at all scales. • A sonic boom and wake exist. • The ratio of energy going into sound to energy going into the wake is 1+v2:-1.

  36. The energy momentum tensor Cylindrical symmetry Gauge choice Vector modes Tensor modes

  37. The energy momentum tensor Tensor modes Vector modes + first order constraint

  38. The energy momentum tensor Tensor modes Vector modes Scalar modes + first order constraint + 3 first order constraints

  39. Large momentum approximations

  40. Large momentum approximations

More Related