990 likes | 1.83k Vues
Orthogonal moments. Tomáš Suk. Department of Image Processing. Orthogonal moments – transformation of features. Geometric moment. Orthogonal moment. Why to use the orthogonal moments ?. Numerical precision. Why to use the orthogonal moments ?. Numerical precision. log F max
E N D
Orthogonal moments Tomáš Suk Department of Image Processing
Orthogonal moments – transformation of features Geometric moment Orthogonal moment
Why to use the orthogonal moments ? • Numerical precision
Why to use the orthogonal moments ? • Numerical precision log Fmax R= ─────── log N Fmax – maximum precision in a computer N – image size R – maximum moment order
Orthogonal moments - set of orthogonal polynomials
Two kinds of orthogonality • Moments (polynomials) orthogonal on a unit square • Moments (polynomials) orthogonal on a unit disk
Moments orthogonal on a square is a system of 1D orthogonal polynomials
Common 1D orthogonal polynomials • Legendre <-1,1> • Chebyshev <-1,1> • Gegenbauer<-1,1> • Jacobi<-1,1> or <0,1> • (generalized) Laguerre <0,∞) • Hermite (-∞,∞)
How to define orthogonal polynomials • Integral representation • Generating function • Differential equation • Hypergeometric series • Rodrigues’ formula • Explicit formula • Recurrence relation
Legendre polynomials Adrien-Marie Legendre (1752 – 1833) was a French mathematician. Adrien-Marie Legendreová (1752 – 1833) byla francouzská matematička.
Legendre polynomials Integral representation , where the contourC encloses the origin and is traversed in a counterclockwise direction. → Legendre polynomials = Spherical polynomials
Legendre polynomials Generating function Pn(x) are coefficients in a Taylor series expansion Differential equation
Legendre polynomials Hypergeometric series Pochhammer symbol = rising factorial Legendre polynomials
Legendre polynomials Rodrigues’ formula
Legendre polynomials Explicit formula Recurrence relation
Legendre polynomials Relation of orthogonality Generally
Chebyshev polynomials ПафнүтийЛьвовичЧебышёв (1821 – 1894) Russian mathematician spelling Russian: Чебышёв→Чебышев French: Tchebichef German: Tschebyschow English: Chebyshev Czech: Čebyšev
Chebyshev polynomials First kind Second kind
Chebyshev polynomials on <-1,1> Second kind First kind
Gegenbauer polynomials Leopold Gegenbauer (1849–1903) Austrian mathematician
Gegenbauer polynomials =ultraspherical, generalization of both Legendre and Chebyshev polynomials – parameter λ= 0, 0.5, 1 - special initial values:
Jacobi polynomials Carl Gustav Jacob Jacobi (1804 – 1851) Prussian mathematician
Jacobi polynomialson <-1,1> Further generalization,parameters α and β Relation of orthogonality
Jacobi polynomialson <0,1> Parameters p and q Relation of orthogonality
Laguerre and Hermite polynomials Edmond Nicolas Laguerre (1834 – 1886) Charles Hermite (1822 – 1901) French mathematicians
Laguerre and Hermite polynomials • Infinite interval of orthogonality • Suitable for particular applications only Relations of orthogonality – Laguerre Hermite
Literature M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables”, 1964.
Discrete OG polynomials on a square Discrete variable Discrete orthogonality
Discrete 1D OG polynomials • Discrete Chebyshev • Discrete Laguerre • Krawtchouk • Hahn • Dual-Hahn • Racah
Recurrence relation in coordinate Discrete Chebyshev polynomials Recurrence relation in order
Krawtchouk polynomials Михайло Пилипович Кравчук (1892 – 1942) Also Kravchuk, Ukrainian mathematician
Weighted Krawtchouk polynomials p=0.5 p=0.2
Dual-Hahn and Racah polynomials Wolfgang Hahn (1911–1998) Austrian mathematician Giulio (Yoel) Racah (Hebrew: ג'וליו (יואל) רקח1909 – 1965) Italian–Israeli physicist and mathematician.
Dual-Hahn and Racah polynomials Nonuniform lattice They were adapted such that s is a traditional coordinate in a discrete image. Zhu, Shu, Zhou, Luo, Coatrieux 2007 Zhu, Shu, Liang, Luo, Coatrieux 2007
Orthogonal polynomials 4F3(4) Wilson Racah Continuous dual Hahn Continuous Hahn Hahn 3F2(3) dual Hahn Meixner - Pollaczek 2F1(2) Krawtchouk Jacobi Meixner 1F1(1)/2F0(1) Laguerre Charlier 2F0(0) Hermite R. Koekoek and R. F. Swarttouw, “The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue,” Report 98-17, Technische Universiteit Delft, Faculty of Technical Mathematics and Informatics, 1996.
q-analogue Hypergeometric series Pochhammer symbol q-Hypergeometric series q-analogue of the Pochhammer symbol
Continuous q-Legendre polynomials Polynomials For q and 1/q are identical
Moments orthogonal on a disk Radial part Angular part
Moments orthogonal on a disk • Zernike • Pseudo-Zernike • Orthogonal Fourier-Mellin • Chebyshev-Fourier • Jacobi-Fourier • Radial harmonic Fourier