140 likes | 253 Vues
This resource explores key concepts in triangle geometry, including the Triangle Angle-Sum Theorem, Vertical Angles Theorem, and the Exterior Angle Theorem. It provides examples of how to apply these theorems to find measures of unknown angles in various triangle configurations, using both direct computation and logical reasoning. Students will learn how to validate their answers by checking that the angles of a triangle sum to 180 degrees. This guide is designed to help improve understanding of geometric principles and enhance problem-solving skills in triangle-related contexts.
E N D
BELLRINGER:1) Classify ΔRST .2) Find y if ΔRST is an isosceles triangle withRS RT. 5-Minute Check 1
Use the Triangle Angle-Sum Theorem SOFTBALL The diagram shows the path of the softball in a drill developed by four players. Find the measure of each numbered angle. Understand Examine the information in the diagram. You know the measures of two angles of one triangle and only one measure of another. You also know that 1 and 2 are vertical angles. Example 1
Use the Triangle Angle-Sum Theorem Plan Find m1 first because the measure of two angles of the triangle are known. Use the Vertical Angles Theorem to find m2. Then you will have enough information to find the measure of 3. Solve Triangle Angle-Sum Theorem Simplify. Subtract 117 from each side. Example 1
Use the Triangle Angle-Sum Theorem 1 and 2 are congruent vertical angles. So, m2 = 63. Triangle Angle-Sum Theorem Simplify. Subtract 142 from each side. Answer: Therefore, m1 = 63, m2 = 63, and m3 = 38. CheckThe sums of the measures of the angles in each triangle should be 180.m1 + 43 + 74 = 63 + 43 + 74 or 180m2 + m3 + 79 = 63 + 38 + 79 or 180 Example 1
Find the measure of 3. A. 95 B. 75 C. 57 D. 85 Example 1
Use the Exterior Angle Theorem GARDENING Find the measure of FLW in the fenced flower garden shown. mLOW + mOWL = mFLW Exterior Angle Theorem x + 32 = 2x – 48 Substitution 32 = x – 48 Subtract x from each side. 80 = x Add 48 to each side. Answer: So, mFLW = 2(80) – 48 or 112. Example 2
The piece of quilt fabric is in the shape of a right triangle. Find the measure of ACD. A. 30 B. 40 C. 50 D. 130 Example 2
m1 = 48 + 56 Exterior Angle Theorem = 104 Simplify. If 2 s form a linear pair, they are supplementary. 104 + m2 = 180 Substitution 76 Subtract 104 from each side. Find Angle Measures in Right Triangles Find the measure of each numbered angle. Example 3
m 3 = 90 – 48 If 2 s form a right angle, they are complementary. = 42 Simplify. Triangle Angle-Sum Theorem (90 – 34) + m2+ m 4 = 180 56 + 76 + m 4 = 180 Substitution Simplify. 132 + m4 = 180 48 Subtract 132 from each side. Find Angle Measures in Right Triangles Example 3
m5 + 41 + 90 = 180 Triangle Angle-Sum Theorem m5 + 143 = 180 Simplify. 49 Subtract 131 from each side. m1 = 104,m2 = 76, m3 = 42,m4 = 48, m5 = 49 Find Angle Measures in Right Triangles Example 3
Find m3. A. 50 B. 45 C. 85 D. 130 Example 3