130 likes | 258 Vues
This progress report details the advancements made by the Solid State Morphing Aircraft Team, focusing on aerodynamics and electronics as of February 13, 2014. Key wing characteristics are explored, including the distinct shapes inspired by birds such as the Wandering Albatross and the Common Buzzard. Additionally, the report discusses the development of a signal generator and its application in smoothing analog signals for a DC-DC boost converter. Research includes innovative fabrication using carbon fiber and smart materials to optimize performance and efficiency.
E N D
Solid State Morphing Aircraft Team Members: James Bird Roger Bounthisane Amber Cook Elaine Gumapas Thoai Nguyen Jeremiah Silvis Progress Report 02/13/2014
Aerodynamics • Wandering Albatross • Common Buzzard • Grey Heron • Cormorant
Geometric Shapes • Rounded Rectangle (Buzzard) • Most simple fabrication shape and theoretical analysis • Elliptic (Grey heron) • Least amount of induced drag • Pointed Tip (Wandering Albatross) • Generates the most lift • Dihedral (Cormorant) • Flies at higher speeds
Wing Characteristics Wing Natural Freq.
Structural =1.86 lb.
Electronics/Coding • Creating a signal generator that has variable period and amplitude. • An RC low pass filter will be added to signal to make a smooth the analog signal for the DC-DC boost converter to follow. • Further research for a simpler method of signal generation with analog control is being researched.
Arduino Code sketch_jan31.ino if(pos<0) { dir=1; pos=0; } if(pos>255) { dir=-1; pos=255; } analogWrite(9,pos); delay(time); } /* created by: James Bird last modified: 1/31/14 */ int diff, feedback, time; intdir=1; int count=1; intpos=1; intdiffPot=0; inttimePot=3; intfeedbackPin=5; void setup() { pinMode(9,OUTPUT); Serial.begin(9600); } void loop() { diff=.1*analogRead(diffPot); //0.1*(1023)=MAX of 102 bit step time=.1*analogRead(timePot); //0.1*1023=MAX of 102 ms time delay feedback=analogRead(feedbackPin); pos=pos+dir*diff; //newPos=oldPos+(direction)step
Output Maximum Frequency : 12 Hz Voltage ranges from 0 to 2.60 VDC STEP DELAY PWM A0 A3 Oscilloscope RC FILTER A5
Smart Materials Figure 2: MFC & Substrate Layup Unimorph (1 MFC) Specimens bonded w/ M8507P1 (MFC) A) 1 layer carbon fiber substrate (85x7mm) B) 3 layered carbon fiber substrate (85x7mm) C) 5 layered carbon fiber substrate (85x7mm) D) Re-using Sample B or Sample C to make a bimorph (85x7mm) Piezo Substrate Substrate Piezo Bimorph (2 MFCs) Sample A Table 1: Properties of Fabricated Carbon Fiber Samples Sample B Sample C Figure 1: Carbon Fiber Samples
Current Fabrication • Test runs are in progress of bonding the MFC to the carbon fiber substrateto prevent any imperfections or slippage while being vacuum bagged Figure 4: Component Layup Macro-Fiber Composite Tape Hinges Carbon Fiber Substrate Glue Epoxy Figure 3: MFC & Carbon Fiber
Testing • Apparatus similar to composite testing for a fixed end cantilever beam • Samples will be tested through series of voltage loads from 0 to 1500v • Data collected and analyzed to observe the relationship between strain (having proportional relationship to voltage) and blocking force of the MFC Figure 5: Apparatus Setup Figure 6: Blocking Force Experiment